Publications by authors named "Alexandre Aono"

Background: Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation.

View Article and Find Full Text PDF

Grape breeding programs are mostly focused on developing new varieties with high production volume, sugar contents, and phenolic compound diversity combined with resistance and tolerance to the main pathogens under culture and adverse environmental conditions. The 'Niagara' variety (Vitis labrusca Vitis vinifera) is one of the most widely produced and commercialized table grapes in Brazil. In this work, we selected three Niagara somatic variants with contrasting berry phenotypes and performed morphological and transcriptomic analyses of their berries.

View Article and Find Full Text PDF

Tropical forage grasses, particularly those belonging to the genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of , a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in families to predict agronomic traits.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents the highest-density genetic map for Urochloa humidicola, highlighting its genetic organization, reproductive methods, and species origin, which are crucial for breeding and research on tropical forage grasses.
  • Urochloa humidicola, an essential tropical pasture grass for poorly drained soils, presents challenges in genetic analysis due to its complex genome and reproduction through apomixis, complicating marker-assisted selection (MAS).
  • The researchers created a detailed linkage map using SNP markers, revealing key genetic information about the species and identifying genetic traits related to apomixis, which could aid in developing better forage grasses.
View Article and Find Full Text PDF

Anthracnose, caused by the hemibiotrophic fungus Colletotrichum lindemuthianum, is a damaging disease of common beans that can drastically reduce crop yield. The most effective strategy to manage anthracnose is the use of resistant cultivars. There are many resistance loci that have been identified, mapped and associated with markers in common bean chromosomes.

View Article and Find Full Text PDF

The protein kinase (PK) superfamily constitutes one of the largest and most conserved protein families in eukaryotic genomes, comprising core components of signaling pathways in cell regulation. Despite its remarkable relevance, only a few kinase families have been studied in . A comprehensive characterization and global expression analysis of the PK superfamily, however, is currently lacking.

View Article and Find Full Text PDF

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and is the core regulator of cellular signaling. Even considering this substantial importance, the kinome of common bean (Phaseolus vulgaris) has not been profiled yet. Here, we identified and characterised the complete set of kinases of common bean, performing an in-depth investigation with phylogenetic analyses and measurements of gene distribution, structural organization, protein properties, and expression patterns over a large set of RNA-Sequencing data.

View Article and Find Full Text PDF

Rubber tree (Hevea brasiliensis) is the main feedstock for commercial rubber; however, its long vegetative cycle has hindered the development of more productive varieties via breeding programs. With the availability of H. brasiliensis genomic data, several linkage maps with associated quantitative trait loci have been constructed and suggested as a tool for marker-assisted selection.

View Article and Find Full Text PDF

Whole-genome sequence analyses have significantly contributed to the understanding of virulence and evolution of the complex (MTBC), the causative pathogens of tuberculosis. Most MTBC evolutionary studies are focused on single nucleotide polymorphisms and deletions, but rare studies have evaluated gene content, whereas none has comprehensively evaluated pseudogenes. Accordingly, we describe an extensive study focused on quantifying and predicting possible functions of MTBC and pseudogenes.

View Article and Find Full Text PDF
Article Synopsis
  • Poaceae is a diverse plant family that includes key crops like forage grasses and sugarcane, which face challenges in genetic research due to their complex genomic structures.
  • The study focuses on developing a machine learning approach to improve the prediction of complex traits in these polyploid species, utilizing genotypic data from sugarcane and forage grasses.
  • The new predictive system outperformed traditional methods, showing over 50% improvements in accuracy, which could streamline breeding programs and enhance genetic advancements.
View Article and Find Full Text PDF

Orphan genes (OGs) are protein-coding genes that are restricted to particular clades or species and lack homology with genes from other organisms, making their biological functions difficult to predict. OGs can rapidly originate and become functional; consequently, they may support rapid adaptation to environmental changes. Extensive spread of mobile elements and whole-genome duplication occurred in the group, which may have contributed to the origin and diversification of OGs in the sugarcane genome.

View Article and Find Full Text PDF

whose gene expression is tightly controlled by the transcription factors (TFs) XYR1 and CRE1, is a potential candidate for hydrolytic enzyme production. Here, we performed a network analysis of IOC-3844 and CBMAI-0179 to explore how the regulation of these TFs varies between these strains. In addition, we explored the evolutionary relationships of XYR1 and CRE1 protein sequences among spp.

View Article and Find Full Text PDF

(rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics.

View Article and Find Full Text PDF

Fungi are key players in biotechnological applications. Although several studies focusing on fungal diversity and genetics have been performed, many details of fungal biology remain unknown, including how cellulolytic enzymes are modulated within these organisms to allow changes in main plant cell wall compounds, cellulose and hemicellulose, and subsequent biomass conversion. With the advent and consolidation of DNA/RNA sequencing technology, different types of information can be generated at the genomic, structural and functional levels, including the gene expression profiles and regulatory mechanisms of these organisms, during degradation-induced conditions.

View Article and Find Full Text PDF

Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies.

View Article and Find Full Text PDF

Plant stomata are essential structures (pores) that control the exchange of gases between plant leaves and the atmosphere, and also they influence plant adaptation to climate through photosynthesis and transpiration stream. Many works in literature aim for a better understanding of these structures and their role in the evolution process and the behavior of plants. Although stomata studies in dicots species have advanced considerably in the past years, even there is not much knowledge about the stomata of cereal grasses.

View Article and Find Full Text PDF

Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus.

View Article and Find Full Text PDF

The protein kinase (PK) superfamily is one of the largest superfamilies in plants and the core regulator of cellular signaling. Despite this substantial importance, the kinomes of sugarcane and sorghum have not been profiled. Here, we identified and profiled the complete kinomes of the polyploid (Ssp) and (Sbi), a close diploid relative.

View Article and Find Full Text PDF

Soil microbial communities act on important environmental processes, being sensitive to the application of wastes, mainly those potential contaminants, such as tannery sludge. Due to the microbiome complexity, graph-theoretical approaches have been applied to represent model microbial communities interactions and identify important taxa, mainly in contaminated soils. Herein, we performed network and statistical analyses into microbial 16S rRNA gene sequencing data from soil samples with the application of different levels of composted tannery sludge (CTS) to assess the most connected nodes and the nodes that act as bridges to identify key microbes within each community.

View Article and Find Full Text PDF

Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars, thus restricting methodological generalization.

View Article and Find Full Text PDF