This paper is focused on the utilization of hybrid catalysts obtained from layered double hydroxides containing molybdate as the compensation anion (Mo-LDH) and graphene oxide (GO) in advanced oxidation using environmentally friendly HO as the oxidation agent for the removal of indigo carmine dye (IC) from wastewaters at 25 °C using 1 wt.% catalyst in the reaction mixture. Five samples of Mo-LDH-GO composites containing 5, 10, 15, 20, and 25 wt% GO labeled as HTMo-xGO (where HT is the abbreviation used for Mg/Al in the brucite type layer of the LDH and x stands for the concentration of GO) have been synthesized by coprecipitation at pH 10 and characterized by XRD, SEM, Raman, and ATR-FTIR spectroscopy, determination of the acid and base sites, and textural analysis by nitrogen adsorption/desorption.
View Article and Find Full Text PDFThe combination of layered double hydroxides (LDH) with graphene oxide (GO) enables the formation of nanohybrids with improved properties. This work focuses on the structural and catalytic properties of Ce-containing MgAl LDH-GO composites bearing different concentrations of GO in the range of 5-25 wt.%.
View Article and Find Full Text PDFMechanical activation and mechanochemical reactions are the subjects of mechanochemistry, a special branch of chemistry studied intensively since the 19th century. Herein, we comparably describe two synthesis methods used to obtain the following layered double hydroxide doped with cerium, MgAlCe(OH)(CO)·2HO: the mechanochemical route and the co-precipitation method, respectively. The influence of the preparation method on the physico-chemical properties as determined by multiple techniques such as XRD, SEM, EDS, XPS, DRIFT, RAMAN, DR-UV-VIS, basicity, acidity, real/bulk densities, and BET measurements was also analyzed.
View Article and Find Full Text PDF