Purpose: To investigate the performance of 4 atlas-based (multi-ABAS) and 2 deep learning (DL) solutions for head-and-neck (HN) elective nodes (CTVn) automatic segmentation (AS) on CT images.
Material And Methods: Bilateral CTVn levels of 69 HN cancer patients were delineated on contrast-enhanced planning CT. Ten and 49 patients were used for atlas library and for training a mono-centric DL model, respectively.
Salivary gland carcinomas (SGCs) are the most heterogeneous subgroup of head and neck malignant tumors, accounting for more than 20 subtypes. The median age of SGC diagnosis is expected to rise in the following decades, leading to crucial clinical challenges in geriatric oncology. Elderly patients, in comparison with patients aged below 65 years, are generally considered less amenable to receiving state-of-the-art curative treatments for localized disease, such as surgery and radiation/particle therapy.
View Article and Find Full Text PDF