Background: As not all target proteins can be easily screened in vitro, advanced virtual screening is becoming critical.
Objective: In this study, we demonstrate the application of reinforcement learning guided virtual screening for γ-aminobutyric acid A receptor (GABAAR) modulating peptides.
Methods: Structure-based virtual screening was performed on a receptor homology model.
A key question concerning the catalytic cycle of dihydrofolate reductase (DHFR) is whether the Met loop is dynamically coupled to the chemical step during catalysis. A more basic, yet unanswered question is whether the Met loop adopts a closed conformation during the chemical hydride transfer step. To examine the most likely conformation of the Met loop during the chemical step, we studied the hydride transfer in wild type (WT) DHFR using hybrid quantum mechanics-molecular mechanics free energy simulations with the Met loop in a closed and disordered conformation.
View Article and Find Full Text PDFThe structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.
View Article and Find Full Text PDFAlthough involved in various physiological functions, nucleoside bis-phosphate analogues and their metal-ion complexes have been scarcely studied. Hence, here, we explored the solution conformation of 2′-deoxyadenosine- and 2′-deoxyguanosine-3′,5′-bisphosphates, 3 and 4, d(pNp), as well as their Zn(2+)/Mg(2+) binding sites and binding-modes (i.e.
View Article and Find Full Text PDFArch Biochem Biophys
September 2015
Enzymes are extraordinarily effective catalysts evolved to perform well-defined and highly specific chemical transformations. Studying the nature of rate enhancements and the mechanistic strategies in enzymes is very important, both from a basic scientific point of view, as well as in order to improve rational design of biomimetics. Kinetic isotope effect (KIE) is a very important tool in the study of chemical reactions and has been used extensively in the field of enzymology.
View Article and Find Full Text PDFThis study employs hybrid quantum mechanics-molecular mechanics (QM/MM) simulations to investigate the effect of mutations of the active-site residue I14 of E. coli dihydrofolate reductase (DHFR) on the hydride transfer. Recent kinetic measurements of the I14X mutants (X = V, A, and G) indicated slower hydride transfer rates and increasingly temperature-dependent kinetic isotope effects (KIEs) with systematic reduction of the I14 side chain.
View Article and Find Full Text PDFIn this review we give an overview of the field of Computational enzymology. We start by describing the birth of the field, with emphasis on the work of the 2013 chemistry Nobel Laureates. We then present key features of the state-of-the-art in the field, showing what theory, accompanied by experiments, has taught us so far about enzymes.
View Article and Find Full Text PDFThioredoxin superfamily proteins introduce disulfide bonds into substrates, catalyze the removal of disulfides, and operate in electron relays. These functions rely on one or more dithiol/disulfide exchange reactions. The flavoenzyme quiescin sulfhydryl oxidase (QSOX), a catalyst of disulfide bond formation with an interdomain electron transfer step in its catalytic cycle, provides a unique opportunity for exploring the structural environment of enzymatic dithiol/disulfide exchange.
View Article and Find Full Text PDFOrotidine 5'-monophosphate (OMP) decarboxylase (ODCase) catalyzes the decarboxylation of OMP to uridine 5'-monophosphate (UMP). Numerous studies of this reaction have suggested a plethora of mechanisms including covalent addition, ylide or carbene formation, and concerted or stepwise protonation. Recent experiments and simulations present strong evidence for a direct decarboxylation mechanism, although direct comparison between experiment and theory is still lacking.
View Article and Find Full Text PDFFormate dehydrogenase (FDH) catalyzes the oxidation of formic acid to carbon dioxide using nicotinamide adenine dinucleotide (NAD(+)) as a cofactor. In the current work we present extensive benchmark calculations for several model reactions in the gas phase that are relevant to the FDH catalyzed hydride transfer. To this end we employ G4MP2 and CBS-QB3 ab initio calculations as well as density functional theory methods.
View Article and Find Full Text PDFA convenient approach to compute kinetic isotope effects (KIEs) in condensed phase chemical reactions is via path integrals (PIs). Usually, the primitive approximation is used in PI simulations, although such quantum simulations are computationally demanding. The efficiency of PI simulations may be greatly improved, if higher-order Trotter factorizations of the density matrix operator are used.
View Article and Find Full Text PDFEvaluating the free-energy landscape of proteins and the corresponding functional aspects presents a major challenge for computer simulation approaches. This challenge is due to the complexity of the landscape and the enormous computer time needed for converging simulations. The use of simplified coarse-grained (CG) folding models offers an effective way of sampling the landscape but such a treatment, however, may not give the correct description of the effect of the actual protein residues.
View Article and Find Full Text PDFZinc metalloenzymes play a major role in key biological processes and carboxypeptidase-A (CPA) is a major prototype of such enzymes. The present work quantifies the energetics of the catalytic reaction of CPA and its mutants using the empirical valence bond (EVB) approach. The simulations allow us to quantify the origin of the catalytic power of this enzyme and to examine different mechanistic alternatives.
View Article and Find Full Text PDFThe ability of the empirical valence bond (EVB) to be used in screening active site residues in enzyme design is explored in a preliminary way. This validation is done by comparing the ability of this approach to evaluate the catalytic contributions of various residues in chorismate mutase. It is demonstrated that the EVB model can serve as an accurate tool in the final stages of computer-aided enzyme design (CAED).
View Article and Find Full Text PDFThe ability to design effective enzymes is one of the most fundamental challenges in biotechnology and in some respects in biochemistry. In fact, such ability would be one of the most convincing manifestations of a full understanding of the origin of enzyme catalysis. In this work, we explore the reliability of different simulation approaches, in terms of their ability to rank different possible active site constructs.
View Article and Find Full Text PDF