Publications by authors named "Alexandra V Yurkovskaya"

Signal amplification by reversible exchange (SABRE) employs the non-equilibrium spin order of parahydrogen as a source of strong nuclear magnetic resonance (NMR) signal enhancement, with the objective of increasing NMR sensitivity. In SABRE, a parahydrogen molecule and a substrate form a transient polarization transfer complex. Performed within the high magnetic field of an NMR spectrometer, SABRE enables the hyperpolarization of nuclear spins without additional polarizers.

View Article and Find Full Text PDF

Relaxation times of nuclear spins often serve as a valuable source of information on the dynamics of various biochemical processes. Measuring relaxation as a function of the external magnetic field turned out to be extremely useful for the studies of weak ligand-protein interactions. We demonstrate that observing the relaxation of the long-lived spin order instead of longitudinal magnetization extends the capability of this approach.

View Article and Find Full Text PDF

The use of parahydrogen - the isomer of molecular hydrogen with zero nuclear spin - is important for promising and actively developing methods for spin hyperpolarization of nuclei called parahydrogen induced polarization (PHIP). However, the dissolved parahydrogen in PHIP experiments quickly loses its spin order, resulting in the formation of orthohydrogen and reduction of the overall nuclear polarization of the substrate. This process is due to the difference of chemical shifts of hydride protons, as well as spin-spin couplings between nuclei, in the intermediate catalytic complexes, and it has not been rigorously explained so far.

View Article and Find Full Text PDF

The time-resolved CIDNP method can provide information about degenerate exchange reactions (DEEs) involving short-lived radicals. In the temperature range from 8 to 65 °C, the DEE reactions of the guanosine-5'-monophosphate anion GMP(-H) with the neutral radical GMP(-H), of the N-acetyl tyrosine anion N-AcTyrO with a neutral radical N-AcTyrO, and of the tyrosine anion TyrO with a neutral radical TyrO were studied. In all the studied cases, the radicals were formed in the reaction of quenching triplet 2,2'-dipyridyl.

View Article and Find Full Text PDF

Dynamical nuclear polarization (DNP) is a powerful method that allows one to polarize virtually any spin-bearing nucleus by transferring electron polarization by microwave irradiation of the electron Zeeman transitions. Under certain conditions, the DNP process can be described in thermodynamical terms using the thermal mixing (TM) model. Different nuclear species can exchange energy indirectly through their interactions with the electron spins and reach a common spin temperature.

View Article and Find Full Text PDF

Reduction of transient carnosine (β-alanyl-L-histidine) radicals by L-tryptophan, -acetyl tryptophan, and the Trp-Gly peptide in neutral and basic aqueous solutions was studied using the technique of time-resolved chemically induced dynamic nuclear polarization (TR CIDNP). Carnosine radicals were generated in the photoinduced reaction with triplet excited 3,3',4,4'-tetracarboxy benzophenone. In this reaction, carnosine radicals with their radical center at the histidine residue are formed.

View Article and Find Full Text PDF

Recently, human mesenchymal stem cells (hMSc) have attracted a great deal of attention as potential therapeutic agents in the treatment of socially significant diseases. Despite substantial advances in stem-cell therapy, the biological mechanisms of hMSc action after transplantation remain unclear. The use of magnetic resonance imaging (MRI) as a non-invasive method for tracking stem cells in the body is very important for analysing their distribution in tissues and organs, as well as for ensuring control of their lifetime after injection.

View Article and Find Full Text PDF

Parahydrogen-induced nuclear polarization offers a significant increase in the sensitivity of NMR spectroscopy to create new probes for medical diagnostics by magnetic resonance imaging. As precursors of the biocompatible hyperpolarized probes, unsaturated derivatives of phosphoric acid, propargyl and allyl phosphates, are proposed. The polarization transfer to H and P nuclei of the products of their hydrogenation by parahydrogen under the ALTADENA and PASADENA conditions, and by the PH-ECHO-INEPT+ pulse sequence of NMR spectroscopy, resulted in a very high signal amplification, which is among the largest for parahydrogen-induced nuclear polarization transfer to the P nucleus.

View Article and Find Full Text PDF

Parahydrogen induced polarization (PHIP) provides a powerful tool to enhance inherently weak nuclear magnetic resonance signals, particularly in biologically relevant compounds. The initial source of PHIP is the non-equilibrium spin order of parahydrogen, i.e.

View Article and Find Full Text PDF

Kynurenic acid (KNA) in the triplet state reacts with tryptophan (Trp) at neutral pH proton-coupled electron transfer (PCET), which includes the stepwise transition of both electron and proton from Trp to triplet KNA. In the case of tyrosine (Tyr), the quenching reaction is H-transfer, a simultaneous transfer of electron and proton. In this work, we used the time-resolved chemically induced dynamic nuclear polarization (TR CIDNP) method to unveil the sites of H/H transfer within KNA.

View Article and Find Full Text PDF

Kynurenic acid (KNA) and 4-hydroxyquinoline (4HQN) are photochemically active products of tryptophan catabolism that readily react with tryptophan (Trp) and tyrosine (Tyr) after optical excitation. Recently, transient absorption experiments have shown that at neutral pH Trp reacts with triplet KNA proton-coupled electron transfer (PCET), and not electron transfer (ET) as it was suggested before. PCET includes the stepwise transition of both electrons and protons from Trp to triplet KNA.

View Article and Find Full Text PDF

Detailed experimental and comprehensive theoretical analysis of singlet-triplet conversion in molecular hydrogen dissolved in a solution together with organometallic complexes used in experiments with parahydrogen (the H molecule in its nuclear singlet spin state) is reported. We demonstrate that this conversion, which gives rise to formation of orthohydrogen (the H molecule in its nuclear triplet spin state), is a remarkably efficient process that strongly reduces the resulting NMR (nuclear magnetic resonance) signal enhancement, here of N nuclei polarized at high fields using suitable NMR pulse sequences. We make use of a simple improvement of traditional pulse sequences, utilizing a single pulse on the proton channel that gives rise to an additional strong increase of the signal.

View Article and Find Full Text PDF

The kinetics of electron transfer (ET) from tyrosine (Tyr) to short-lived histidine (His) radicals in peptides of different structures was monitored using time-resolved chemically induced dynamic nuclear polarization (CIDNP) to follow the reduction of the His radicals using NMR detection of the diamagnetic hyperpolarized reaction products. In aqueous solution over a wide pH range, His radicals were generated in situ in the photo-induced reaction with the photosensitizer, 3,3',4,4'-tetracarboxy benzophenone. Model simulations of the CIDNP kinetics provided pH-dependent rate constants of intra- and intermolecular ET, and the pH dependencies of the reaction under study were interpreted in terms of protonation states of the reactants and the product, His with either protonated or neutral imidazole.

View Article and Find Full Text PDF

Signal amplification by reversible exchange (SABRE) is a popular method for generating strong signal enhancements in nuclear magnetic resonance (NMR). In SABRE experiments, the source of polarization is provided by the nonthermal spin order of parahydrogen (pH , the H molecule in its nuclear singlet spin state). Polarization formation requires that both pH and a substrate molecule bind to an Ir-based complex where polarization transfer occurs.

View Article and Find Full Text PDF

Signal Amplification By Reversible Exchange (SABRE) is gaining increased attention as a tool to enhance weak Nuclear Magnetic Resonance (NMR) signals. In SABRE, spin order is transferred from parahydrogen (H in its nuclear singlet spin state) to a substrate molecule in a transient Ir-based complex. In recent years, SABRE polarization of biologically active substrates has been demonstrated, notably of metronidazole - an antibiotic and antiprotozoal drug.

View Article and Find Full Text PDF

Photochemically induced dynamic nuclear polarization (photo-CIDNP) is a method to hyperpolarize nuclear spins using light. In most cases, CIDNP experiments are performed in high magnetic fields and the sample is irradiated by light inside a nuclear magnetic resonance (NMR) spectrometer. Here we demonstrate photo-CIDNP hyperpolarization generated in the Earth's magnetic field and under zero- to ultralow-field (ZULF) conditions.

View Article and Find Full Text PDF

Parahydrogen-induced polarization (PHIP) is a source of nuclear spin hyperpolarization, and this technique allows for the preparation of biomolecules for in vivo metabolic imaging. PHIP delivers hyperpolarization in the form of proton singlet order to a molecule, but most applications require that a heteronuclear (e.g.

View Article and Find Full Text PDF

The development of nuclear spins hyperpolarization, and the search for molecules that can be efficiently hyperpolarized is an active area in nuclear magnetic resonance. In this work we present a detailed study of SABRE SHEATH (signal amplification by reversible exchange in shield enabled alignment transfer to heteronuclei) experiments on N -azobenzene. In SABRE SHEATH experiments the nuclear spins of the target are hyperpolarized through transfer of spin polarization from parahydrogen at ultralow fields during a reversible chemical process.

View Article and Find Full Text PDF

A novel method dubbed ZULF-TOCSY results from the combination of Zero and Ultra-Low Field (ZULF) with high-field, high-resolution NMR, leading to a generalization of the concept of total correlation spectroscopy (TOCSY). ZULF-TOCSY is a new building block for NMR methods, which has the unique property that the polarization is evenly distributed among all NMR-active nuclei such as 1H, 13C, 15N, 31P, etc., provided that they belong to the same coupling network, and provided that their relaxation is not too fast at low fields, as may occur in macromolecules.

View Article and Find Full Text PDF

The field of zero- to ultralow-field (ZULF) nuclear magnetic resonance (NMR) is currently experiencing rapid growth, owing to progress in optical magnetometry and attractive features of ZULF-NMR such as low hardware cost and excellent spectral resolution achieved under ZULF conditions. In this work, an approach is proposed and demonstrated for simultaneous acquisition of ZULF-NMR spectra of individual C-containing isotopomers of chemical compounds in a complex mixture. The method makes use of fast field cycling such that the spin evolution takes place under ZULF conditions, whereas signal detection is performed in a high-field NMR spectrometer.

View Article and Find Full Text PDF

Flavin adenine dinucleotide (FAD) is an important cofactor in many light-sensitive enzymes. The role of the adenine moiety of FAD in light-induced electron transfer was obscured, because it involves an adenine radical, which is short-lived with a weak chromophore. However, an intramolecular electron transfer from adenine to flavin was revealed several years ago by Robert Kaptein by using chemically induced dynamic nuclear polarization (CIDNP).

View Article and Find Full Text PDF

Second-order rate constants of the reduction of histidine radicals by tryptophan were obtained for all combinations of the two amino acids and their N-acetyl derivatives. For the dipeptide N-acetyl histidine-tryptophan, contributions from inter- and intramolecular reduction were revealed. The pH dependences of the rate constants were found to be determined by the protonation state of the amino group of tryptophan.

View Article and Find Full Text PDF

The solid-state photo-chemically induced dynamic nuclear polarization (photo-CIDNP) effect generates non-Boltzmann nuclear spin magnetization, referred to as hyperpolarization, allowing for high gain of sensitivity in nuclear magnetic resonance (NMR). Well known to occur in photosynthetic reaction centers, the effect was also observed in a light-oxygen-voltage (LOV) domain of the blue-light receptor phototropin, in which the functional cysteine was removed to prevent photo-chemical reactions with the cofactor, a flavin mononucleotide (FMN). Upon illumination, the FMN abstracts an electron from a tryptophan to form a transient spin-correlated radical pair (SCRP) generating the photo-CIDNP effect.

View Article and Find Full Text PDF

Strong coupling of nuclear spins, which is achieved when their scalar coupling is greater than or comparable to the difference in their Larmor precession frequencies in an external magnetic field, gives rise to efficient coherent longitudinal polarization transfer. The strong coupling regime can be achieved when the external magnetic field is sufficiently low, as is reduced proportional to the field strength. In the present work, however, we demonstrate that in heteronuclear spin systems these simple arguments may not hold, since heteronuclear spin-spin interactions alter the value.

View Article and Find Full Text PDF

A comprehensive description of the spin dynamics underlying the formation of Ortho-Deuterium Induced Polarization (ODIP) is presented. ODIP can serve as a tool for enhancing Nuclear Magnetic Resonance (NMR) signals of H nuclei, being important probes of molecular structure and dynamics. To produce ODIP, in the first step, the D gas is brought to thermal equilibrium at low temperature, here 30 K, so that the ortho-component, corresponding to the total spin of the H nuclei equal to 0 and 2, is enriched, here to 92%.

View Article and Find Full Text PDF