Publications by authors named "Alexandra T Hendrickx"

Mitochondrial disorders, characterized by clinical symptoms and/or OXPHOS deficiencies, are caused by pathogenic variants in mitochondrial genes. However, pathogenic variants in some of these genes can lead to clinical manifestations which overlap with other neuromuscular diseases, which can be caused by pathogenic variants in non-mitochondrial genes as well. Mitochondrial pathogenic variants can be found in the mitochondrial DNA (mtDNA) or in any of the 1,500 nuclear genes with a mitochondrial function.

View Article and Find Full Text PDF

Background: Severe, disease-causing germline mitochondrial (mt)DNA mutations are maternally inherited or arise de novo. Strategies to prevent transmission are generally available, but depend on recurrence risks, ranging from high/unpredictable for many familial mtDNA point mutations to very low for sporadic, large-scale single mtDNA deletions. Comprehensive data are lacking for de novo mtDNA point mutations, often leading to misconceptions and incorrect counselling regarding recurrence risk and reproductive options.

View Article and Find Full Text PDF

Severe recessive mitochondrial myopathy caused by FBXL4 gene mutations may present prenatally with polyhydramnios and cerebellar hypoplasia. Characteristic dysmorphic features are: high and arched eyebrows, triangular face, a slight upslant of palpebral fissures, and a prominent pointed chin. Metabolic investigations invariably show increased serum lactate and pyruvate levels.

View Article and Find Full Text PDF

Identifying mitochondrial DNA (mtDNA) sequence variants in human diseases is complicated. Many pathological mutations are heteroplasmic, with the mutant allele represented at highly variable percentages. High-resolution melt (HRM or HRMA) profiling was applied to comprehensive assessment of the mitochondrial genome and targeted assessment of recognized pathological mutations.

View Article and Find Full Text PDF

Purpose: Oxidative phosphorylation is under dual genetic control of the nuclear and the mitochondrial DNA (mtDNA). Oxidative phosphorylation disorders are clinically and genetically heterogeneous, which makes it difficult to determine the genetic defect, and symptom-based protocols which link clinical symptoms directly to a specific gene or mtDNA mutation are falling short. Moreover, approximately 25% of the pediatric patients with oxidative phosphorylation disorders is estimated to have mutations in the mtDNA and a standard screening approach for common mutations and deletions will only explain part of these cases.

View Article and Find Full Text PDF