Background: In neuroscience clinical research studies, much time and effort are devoted to deciding what data to collect and developing data collection forms and data management systems to capture the data. Many investigators receiving funding from National Institute of Neurological Disorders and Stroke (NINDS), the National Institutes of Health (NIH), are required to share their data once their studies are complete, but the multitude of data definitions and formats make it extremely difficult to aggregate data or perform meta-analyses across studies.
Purpose: In an effort to assist investigators and accelerate data sharing in neuroscience clinical research, the NINDS has embarked upon the Common Data Element (CDE) Project.
The Common Data Element (CDE) Project was initiated in 2006 by the National Institute of Neurological Disorders and Stroke (NINDS) to develop standards for performing funded neuroscience-related clinical research. CDEs are intended to standardize aspects of data collection; decrease study start-up time; and provide more complete, comprehensive, and equivalent data across studies within a particular disease area. Therefore, CDEs will simplify data sharing and data aggregation across NINDS-funded clinical research, and where appropriate, facilitate the development of evidenced-based guidelines and recommendations.
View Article and Find Full Text PDFJ Exp Psychol Hum Percept Perform
October 2005
In separate studies, observers viewed upright biological motion, inverted biological motion, or arbitrary motion created from systematically randomizing the positions of point-light dots. Results showed that observers (a) could learn to detect the presence of arbitrary motion, (b) could not learn to discriminate the coherence of arbitrary motion, although they could do so for upright biological motion, (c) could apply a detection strategy to learn to detect the presence of inverted biological motion nearly as well as they detected upright biological motion, and (d) performed better discriminating the coherence of upright biological motion compared with inverted biological motion. These results suggest that learning and form information play an important role in perceiving biological motion, although this role may only be apparent in tasks that require processing information from multiple parts of the motion display.
View Article and Find Full Text PDFThe perception of biological motion using point light animation techniques was investigated in several experiments. Animations simulating walking were presented with additional masking dots. The temporal properties of the walking motion or the temporal relationship between the walking and masking motions were systematically manipulated.
View Article and Find Full Text PDF