The vast differences in material properties accessible crosslinking of sidechain-functionalized polymers are driven by topology. For example, vulcanized rubbery networks feature intermolecular connections and loop topologies of various orders while single-chain nanoparticles (SCNPs) are comprised, in principle, entirely of primary loops. Despite this fact, precise quantification of loops in sidechain crosslinked polymers has not been accomplished.
View Article and Find Full Text PDFFrom magnetic resonance imaging to cancer hyperthermia and wireless control of cell signaling, ferrite nanoparticles produced by thermal decomposition methods are ubiquitous across biomedical applications. While well-established synthetic protocols allow for precise control over the size and shape of the magnetic nanoparticles, structural defects within seemingly single-crystalline materials contribute to variability in the reported magnetic properties. We found that stabilization of metastable wüstite in commonly used hydrocarbon solvents contributed to significant cation disorder, leading to nanoparticles with poor hyperthermic efficiencies and transverse relaxivities.
View Article and Find Full Text PDF