Publications by authors named "Alexandra Ribarits"

Large cities are typically characterized by a mosaic of green spaces that hold a remarkable variety of native and "exotic" plants. Urban beekeeping has gained increasing popularity. In order to characterize the "urban" in the honey, pollen diversity in 50 honey samples from 18 apiary locations in Vienna, Austria, was microscopically analyzed.

View Article and Find Full Text PDF

It is difficult to trace and identify genome-edited food and feed products if relevant information is not made available to competent authorities. This results in major challenges, as genetically modified organism (GMO) regulatory frameworks for food and feed that apply to countries such as the member states of the European Union (EU) require enforcement based on detection. An international anticipatory detection and identification framework for voluntary collaboration and collation of disclosed information on genome-edited plants could be a valuable tool to address these challenges caused by data gaps.

View Article and Find Full Text PDF

We show that DCN1 binds ubiquitin and RUB/NEDD8, associates with cullin, and is functionally conserved. DCN1 activity is required for pollen development transitions and embryogenesis, and for pollen tube growth. Plant proteomes show remarkable plasticity in reaction to environmental challenges and during developmental transitions.

View Article and Find Full Text PDF

Reversible male sterility and doubled haploid plant production are two valuable technologies in F(1)-hybrid breeding. F(1)-hybrids combine uniformity with high yield and improved agronomic traits, and provide self-acting intellectual property protection. We have developed an F(1)-hybrid seed technology based on the metabolic engineering of glutamine in developing tobacco anthers and pollen.

View Article and Find Full Text PDF

Proline dehydrogenase is the rate-limiting enzyme in proline degradation and serves important functions in the stress responses and development of plants. We isolated two tobacco proline dehydrogenases, NtPDH1 and NtPDH2, in the course of screening for genes upregulated in stressed tobacco (Nicotiana tabacum) microspores. Expression analysis revealed that the two genes are differentially regulated.

View Article and Find Full Text PDF