Many root parasitic plants in the Orobanchaceae use host-derived strigolactones (SLs) as germination cues. This adaptation facilitates attachment to a host and is particularly important for the success of obligate parasitic weeds that cause substantial crop losses globally. Parasite seeds sense SLs through 'divergent' KARRIKIN INSENSITIVE2 (KAI2d)/HYPOSENSITIVE TO LIGHT α/β-hydrolases that have undergone substantial duplication and diversification in Orobanchaceae genomes.
View Article and Find Full Text PDFParasitic plants are worldwide threats that damage major agricultural crops. To initiate infection, parasitic plants have developed the ability to locate hosts and grow towards them. This ability, called host tropism, is critical for parasite survival, but its underlying mechanism remains mostly unresolved.
View Article and Find Full Text PDFThe effects of the phytohormone strigolactone (SL) and smoke-derived karrikins (KARs) on plants are generally distinct, despite the fact that they are perceived through very similar mechanisms. The homologous receptors DWARF14 (D14) and KARRIKIN-INSENSITIVE2 (KAI2), together with the F-box protein MORE AXILLARY GROWTH2 (MAX2), mediate SL and KAR responses, respectively, by targeting different SMAX1-LIKE (SMXL) family proteins for degradation. These mechanisms are putatively well-insulated, with D14-MAX2 targeting SMXL6, SMXL7, and SMXL8 and KAI2-MAX2 targeting SMAX1 and SMXL2 in .
View Article and Find Full Text PDFDWARF14 (D14) is an ɑ/β-hydrolase and receptor for the plant hormone strigolactone (SL) in angiosperms. Upon SL perception, D14 works with MORE AXILLARY GROWTH2 (MAX2) to trigger polyubiquitination and degradation of DWARF53(D53)-type proteins in the SUPPRESSOR OF MAX2 1-LIKE (SMXL) family. We used CRISPR-Cas9 to generate knockout alleles of the two homoeologous genes in the genome.
View Article and Find Full Text PDF