The rapid and accurate detection of SARS-CoV-2, particularly its spike receptor-binding domain (S-RBD), was crucial for managing the COVID-19 pandemic. This study presents the development and optimization of two types of aptasensors: quartz crystal microbalance (QCM) and electrochemical sensors, both employing thiol-modified DNA aptamers for S-RBD detection. The QCM aptasensor demonstrated exceptional sensitivity, achieved by optimizing aptamer concentration, buffer composition, and pre-treatment conditions, with a limit of detection (LOD) of 0.
View Article and Find Full Text PDFOncological diseases represent a significant global health challenge, with high mortality rates. Early detection is crucial for effective treatment, and aptamers, which demonstrate superior specificity and stability compared to antibodies, offer a promising avenue for diagnostic advancement. This study presents the design, development and evaluation of a quartz crystal microbalance (QCM) sensor functionalized with the T2-KK1B10 aptamer for the sensitive and specific detection of Chronic Myeloid Leukemia (CML) K562 cells.
View Article and Find Full Text PDFAptamers are short oligonucleotides with single-stranded regions or peptides that recently started to transform the field of diagnostics. Their unique ability to bind to specific target molecules with high affinity and specificity is at least comparable to many traditional biorecognition elements. Aptamers are synthetically produced, with a compact size that facilitates deeper tissue penetration and improved cellular targeting.
View Article and Find Full Text PDFClinical experience with tyrosine kinase inhibitors (TKIs) over the past two decades has shown that, despite the apparent therapeutic benefit, nearly 30% of patients with chronic myelogenous leukemia (CML) display primary resistance or intolerance to TKIs, and approximately 25% of those treated are forced to switch TKIs at least once during therapy due to acquired resistance. Safe and effective treatment modalities targeting leukemic clones that escape TKI therapy could hence be game changers in the professional management of these patients. Here, we aimed to investigate the efficacy of a novel therapeutic oligonucleotide of unconventional design, called ASP210, to reduce mRNA levels in TKI-resistant CML cells, with the assumption of inducing their apoptosis.
View Article and Find Full Text PDFIn only two years, the coronavirus disease 2019 (COVID-19) pandemic has had a devastating effect on public health all over the world and caused irreparable economic damage across all countries. Due to the limited therapeutic management of COVID-19 and the lack of tailor-made antiviral agents, finding new methods to combat this viral illness is now a priority. Herein, we report on a specific oligonucleotide-based RNA inhibitor targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
View Article and Find Full Text PDFAcquired drug resistance and metastasis in breast cancer (BC) are coupled with epigenetic deregulation of gene expression. Epigenetic drugs, aiming to reverse these aberrant transcriptional patterns and sensitize cancer cells to other therapies, provide a new treatment strategy for drug-resistant tumors. Here we investigated the ability of DNA methyltransferase (DNMT) inhibitor decitabine (DAC) to increase the sensitivity of BC cells to anthracycline antibiotic doxorubicin (DOX).
View Article and Find Full Text PDFIn this paper, we compared the effects of bortezomib on L1210 (S) cells with its effects on P-glycoprotein (P-gp)-positive variant S cells, which expressed P-gp either after selection with vincristine (R cells) or after transfection with a human gene encoding P-gp (T cells). Bortezomib induced the death-related effects in the S, R, and T cells at concentrations not exceeding 10 nM. Bortezomib-induced cell cycle arrest in the G2/M phase was more pronounced in the S cells than in the R or T cells and was related to the expression levels of cyclins, cyclin-dependent kinases, and their inhibitors.
View Article and Find Full Text PDFBiosensing atomic force microscopy (AFM) offers the unique feature to determine the energy landscape of a bimolecular interaction at the real single molecule level. Furthermore, simultaneous and label-free mapping of molecular recognition and the determination of sample topography at the nanoscale gets possible. A prerequisite and one of the major parts in biosensing AFM are the bio-functionalized AFM tips.
View Article and Find Full Text PDFVariants of L1210 leukemia cells-namely, parental P-glycoprotein-negative S cells and R and T cells expressing P-glycoprotein, due to selection with vincristine and transfection with the human p-glycoprotein gene, respectively-were used. The responses of these cell variants to two naturally occurring isothiocyanates-sulforaphane (SFN, from cruciferous vegetables) and allyl isothiocyanate (AITC, from mustard, radish, horseradish and wasabi)-were studied. We obtained conflicting results for the cell death effects induced by isothiocyanates, as measured by i.
View Article and Find Full Text PDFDetection of the breast cancer cells is important for early diagnosis of the cancer. We applied thickness shear mode acoustics method (TSM) for detection of SK-BR-3 breast cancer cells using DNA aptamers specific to HER2 positive membrane receptors. The biotinylated aptamers were immobilized at the neutravidin layer chemisorbed at gold surface of TSM transducer.
View Article and Find Full Text PDFBy using the thickness shear mode acoustics method (TSM) and single-molecule force spectroscopy (SMFS) we studied the interactions between DNA aptamers (sgc8c) specific to the protein tyrosine kinase 7 (PTK7), which is localized in the membranes of leukemia lymphoblastics (MOLT-4), and lymphocyte (Jurkat) cell lines, as well with PTK7-negative U266 myeloid leukemia cells. The TSM method allowed the development of a highly sensitive, label-free biosensor for the detection leukemia cells with a limit of detection of (195±20) cells/mL. SMFS approved the high selectivity of the sgc8c aptamers to the PTK7 receptors at the cell surface and allowed determining the binding probability of the aptamers to the PTK7 receptors at different cell lines.
View Article and Find Full Text PDFWe studied the interaction of the specific DNA aptamer sgc8c immobilized at the AFM tip with its corresponding receptor, the protein tyrosine kinase-7 (PTK7) embedded in the membrane of acute lymphoblastic leukemia (ALL) cells (Jurkat T-cells). Performing single molecule force spectroscopy (SMFS) experiments, we showed that the aptamer sgc8c bound with high probability (38.3 ± 7.
View Article and Find Full Text PDFIn this study, dendrimers have been purposed as an alternative approach for delivery of HIV peptides to dendritic cells. We have investigated the interaction of dendriplexes formed from polyanionic HIV peptide Nef and cationic carbosilane dendrimer (CBD) with model lipid membranes - large unilamellar vesicles (LUVs), Langmuir monolayers and supported lipid membranes (sBLMs) containing various molar ratio of zwitterionic 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-2000] (DSPE-PEG). In our experiments, the lipid membranes represented the model of the plasma membrane of the cell.
View Article and Find Full Text PDFThrombin aptamer binding strength and stability is dependent on sterical parameters when used for atomic force microscopy sensing applications. Sterical improvements on the linker chemistry were developed for high-affinity binding. For this we applied single molecule force spectroscopy using two enhanced biotinylated thrombin aptamers, BFF and BFA immobilized on the atomic force microscopy tip via streptavidin.
View Article and Find Full Text PDFWe synthesized 25,26,27,28-tetrakis(11-sulfanylundecyloxy)calix[4]arene (CALIX) sensitive to dopamine and confirmed its structure by (1)H NMR and mass spectrometry. Chemisorption of CALIX molecules or their mixtures with 1-dodecanethiols (DDT) or hexadecanethiols (HDT) resulted in formation of compact low permeable monolayers as revealed by cyclic voltammetry at presence of redox probe [Fe(CN)(6)](3-/4-). These self-assembled monolayers (SAMs) served as sensor for dopamine.
View Article and Find Full Text PDF