Benign prostatic hyperplasia (BPH) is a common condition marked by the enlargement of the prostate gland, which often leads to significant urinary symptoms and a decreased quality of life. The development of clinically relevant animal models is crucial for understanding the pathophysiology of BPH and improving treatment options. This study aims to establish a patient-derived xenograft (PDX) model using benign prostatic tissues to explore the molecular and cellular mechanisms of BPH.
View Article and Find Full Text PDFLake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals.
View Article and Find Full Text PDFAfter spinal cord injury (SCI), use chronic urinary catheters for bladder management is common, making these patients especially vulnerable to catheter-associated complications. Chronic catheterization is associated with bacterial colonization and frequent catheter-associated urinary tract infections (CAUTI). One determinant of infection success and treatment resistance is production of catheter-associated biofilms, composed of microorganisms and host- and microbial-derived components.
View Article and Find Full Text PDFUnlike growth on tissue, microbes can grow freely on implantable devices with minimal immune system intervention and often form resilient biofilms that continuously pump out pathogenic cells. The efficacy of antibiotics used to treat infection is declining due to increased rates of pathogenic resistance. A simple, one-step zwitterionic surface modification is developed to significantly reduce protein and microbial adhesion to synthetic materials and demonstrate the successful modification of several clinically relevant materials, including recalcitrant materials such as elastomeric polydimethylsiloxane.
View Article and Find Full Text PDFMicrobial community compositions and functional profiles were analyzed in microcosms established using aquifer materials from a former automobile factory site, where 1,4-dioxane was identified as the primary contaminant of concern. Propane or oxygen biostimulation resulted in limited 1,4-dioxane degradation, which was markedly enhanced with the addition of nutrients, resulting in abundant Mycobacterium and Methyloversatilis taxa and high expressions of propane monooxygenase gene, prmA. In bioaugmented treatments, Pseudonocardia dioxanivorans CB1190 or Rhodococcus ruber ENV425 strains dominated immediately after augmentation and degraded 1,4-dioxane rapidly which was consistent with increased representation of xenobiotic and lipid metabolism-related functions.
View Article and Find Full Text PDFBiodegradation of 1,4-dioxane was examined in packed quartz and soil column flow-through systems. The inhibitory effects of co-contaminants, specifically trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and copper (Cu) ions, were investigated in the columns either with or without bioaugmentation with a 1,4-dioxane degrading bacterium Pseudonocardia dioxanivorans CB1190. Results indicate that CB1190 cells readily grew and colonized in the columns, leading to significant degradation of 1,4-dioxane under oxic conditions.
View Article and Find Full Text PDFBioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA).
View Article and Find Full Text PDFIn order to elucidate interactions between sulfate reduction and dechlorination, we systematically evaluated the effects of different concentrations of sulfate and sulfide on reductive dechlorination by isolates, constructed consortia, and enrichments containing sp. Sulfate (up to 5 mM) did not inhibit the growth or metabolism of pure cultures of the dechlorinator 195, the sulfate reducer Hildenborough, or the syntroph In contrast, sulfide at 5 mM exhibited inhibitory effects on growth of the sulfate reducer and the syntroph, as well as on both dechlorination and growth rates of Transcriptomic analysis of 195 revealed that genes encoding ATP synthase, biosynthesis, and Hym hydrogenase were downregulated during sulfide inhibition, whereas genes encoding metal-containing enzymes involved in energy metabolism were upregulated even though the activity of those enzymes (hydrogenases) was inhibited. When the electron acceptor (trichloroethene) was limiting and an electron donor (lactate) was provided in excess to cocultures and enrichments, high sulfate concentrations (5 mM) inhibited reductive dechlorination due to the toxicity of generated sulfide.
View Article and Find Full Text PDFDehalococcoides mccartyi 195 (strain 195) and Syntrophomonas wolfei were grown in a sustainable syntrophic coculture using butyrate as an electron donor and carbon source and trichloroethene (TCE) as an electron acceptor. The maximum dechlorination rate (9.9 ± 0.
View Article and Find Full Text PDFThis study demonstrated the utility in correlating performance and community structure of a trichloroethene (TCE)-dechlorinating microbial consortium; specifically dechlorinators, fermenters, homoacetogens, and methanogens. Two complementary approaches were applied: predicting trends in the microbial community structure based on an electron balance analysis and experimentally assessing the community structure via pyrosequencing and quantitative polymerase chain reaction (qPCR). Fill-and-draw reactors inoculated with the DehaloR^2 consortium were operated at five TCE-pulsing rates between 14 and 168 µmol/10-day-SRT, amended with TCE every 2 days to give peak concentrations between 0.
View Article and Find Full Text PDF