Publications by authors named "Alexandra Piryatinska"

We consider a retrospective change-point detection problem for multidimensional time series of arbitrary nature (in particular, panel data). Change-points are the moments at which the changes in generating mechanism occur. Our method is based on the new theory of ϵ-complexity of individual continuous vector functions and is model-free.

View Article and Find Full Text PDF

One of the most important research areas in case-control Genome-Wide Association Studies is to determine how the effect of a genotype varies across the environment or to measure the gene-environment interaction (G × E). We consider the scenario when some of the "healthy" controls actually have the disease and when the frequency of these latent cases varies by the environmental variable of interest. In this scenario, performing logistic regression with the clinically diagnosed disease status as an outcome variable and will result in biased estimates of G × E interaction.

View Article and Find Full Text PDF

Background And Objective: A crucial step in a classification of electroencephalogram (EEG) records is the feature selection. The feature selection problem is difficult because of the complex structure of EEG signals. To classify the EEG signals with good accuracy, most of the recently published studies have used high-dimensional feature spaces.

View Article and Find Full Text PDF

Claudin proteins are components of epithelial tight junctions; a subtype of breast cancer has been defined by the reduced expression of mRNA for claudins and other genes. Here, we characterize the expression of glycoproteins in breast cell lines for the claudin-low subtype using liquid chromatography/tandem mass spectrometry. Unsupervised clustering techniques reveal a group of claudin-low cell lines that is distinct from nonmalignant, basal, and luminal lines.

View Article and Find Full Text PDF

Approximately 20 drugs have been approved by the FDA for breast cancer treatment, yet predictive biomarkers are known for only a few of these. The identification of additional biomarkers would be useful both for drugs currently approved for breast cancer treatment and for new drug development. Using glycoprotein expression data collected via mass spectrometry, in conjunction with statistical models constructed by elastic net or lasso regression, we modeled quantitatively the responses of breast cancer cell lines to ~90 drugs.

View Article and Find Full Text PDF

Slowly cycling tumor cells that may be present in human tumors may evade cytotoxic therapies, which tend to be more efficient at destroying cells with faster growth rates. However, the proportion and growth rate of slowly cycling tumor cells is often unknown in preclinical model systems used for drug discovery. Here, we report a quantitative approach to quantitate slowly cycling malignant cells in solid tumors, using a well-established mouse model of Kras-induced lung cancer (Kras(G12D/+)).

View Article and Find Full Text PDF

This paper extends our previous work on automated detection and classification of neonate EEG sleep stages. In [19] we adapted and integrated a range of computational, mathematical and statistical tools for the analysis of neonatal electroencephalogram (EEG) sleep recordings with the aim of facilitating the assessment of neonatal brain maturation and dismaturity by studying the structure and temporal patterns of their sleep. That work relied on algorithms using a single channel of EEG.

View Article and Find Full Text PDF

The paper integrates and adapts a range of advanced computational, mathematical and statistical tools for the purpose of analysis of neonate sleep stages based on extensive electroencephalogram (EEG) recordings. The level of brain dysmaturity of a neonate is difficult to assess by direct physical or cognitive examination, but dysmaturity is known to be directly related to the structure of neonatal sleep as reflected in the nonstationary time series produced by EEG signals which, importantly, can be collected trough a noninvasive procedure. In the past, the assessment of sleep EEG structure has often been done manually by experienced clinicians.

View Article and Find Full Text PDF