Publications by authors named "Alexandra Olling"

Toxin A and Toxin B (TcdA/TcdB) are large glucosyltransferases produced by Clostridium difficile. TcdB but not TcdA induces reactive oxygen species-mediated early cell death (ECD) when applied at high concentrations. We found that nonglucosylated Rac1 is essential for induction of ECD since inhibition of Rac1 impedes this effect.

View Article and Find Full Text PDF

Virulent toxins TcdA and TcdB invade host intestinal epithelia by endocytosis and use the acidic environment of intracellular vesicles for further processing and activation. We investigated the role of ClC-5, a chloride/proton exchanger expressed in the endosomes of gastrointestinal epithelial cells, in the activation and processing of toxins. Enhanced intoxication by TcdA and TcdB was observed in cells expressing ClC-5 but not ClC-4, another chloride/proton exchanger with similar function but different localization.

View Article and Find Full Text PDF

Clostridium difficile may induce antibiotic-associated diarrhoea and, in severe cases, pseudomembranous colitis characterized by tremendous neutrophil infiltration. All symptoms are caused by two exotoxins: TcdA and TcdB. We describe here the activation of isolated human blood neutrophils by TcdB and, moreover, by toxin fragments generated by limited proteolytical digestion.

View Article and Find Full Text PDF

Toxin A (TcdA) and B (TcdB) from Clostridium difficile enter host cells by receptor-mediated endocytosis. A prerequisite for proper toxin action is the intracellular release of the glucosyltransferase domain by an inherent cysteine protease, which is allosterically activated by inositol hexaphosphate (IP6). We found that in in vitro assays, the C-terminally-truncated TcdA1-1065 was more efficient at IP6-induced cleavage compared with full-length TcdA.

View Article and Find Full Text PDF

TcdA and TcdB are the main pathogenicity factors of Clostridium difficile-associated diseases. Both toxins inhibit Rho GTPases, and consequently, apoptosis is induced in the affected cells. We found that TcdB at higher concentrations exhibits cytotoxic effects that are independent on Rho glucosylation.

View Article and Find Full Text PDF

The combined repetitive oligopeptides (CROPs) of Clostridium difficile toxins A (TcdA) and B (TcdB) induce clathrin-mediated endocytosis of the toxins. Inconsistently, CROP-truncated TcdA(1-1874) is also capable of entering host cells and displaying full cytotoxic properties although with less potency. Pre-incubation of cells with isolated CROPs, however, reconstitutes the reduced uptake of TcdA(1-1874) to the level of the full-length toxin.

View Article and Find Full Text PDF

The small open reading frame tcdE is located between the genes tcdA and tcdB which encode toxin A (TcdA) and B (TcdB), respectively, within the pathogenicity locus of Clostridium difficile. Sequence and structure similarities to bacteriophage-encoded holins have led to the assumption that TcdE mediates the release of the toxins from C. difficile into the extracellular environment.

View Article and Find Full Text PDF

The pathogenicity of Clostridium difficile is primarily linked to secretion of the intracellular acting toxins A (TcdA) and B (TcdB) which monoglucosylate and thereby inactivate Rho GTPases of host cells. Although the molecular mode of action of TcdA and TcdB is well understood, far less is known about toxin binding and uptake. It is acknowledged that the C-terminally combined repetitive oligopeptides (CROPs) of the toxins function as receptor binding domain.

View Article and Find Full Text PDF

Toxin A and toxin B from Clostridium difficile are the causative agents of the antibiotic-associated pseudomembranous colitis. They are of an A/B structure type and possess inositol hexakisphosphate-inducible autoproteolytic activity to release their glucosyltransferase domain to the cytoplasm of target cells. In this study, we investigated the effect of extracellular and intracellular autoproteolytic cleavage on the function of TcdA.

View Article and Find Full Text PDF

Clostridium difficile toxin A and B (TcdA/TcdB) are glucosyltransferases that glucosylate GTPases of the Rho family. The epidermal growth factor (EGF) positively modulates C. difficile toxin-induced disturbance of the intestinal barrier function by an unknown mechanism.

View Article and Find Full Text PDF

The intestinal epithelial cell line HT-29 was used to study the apoptotic effect of Clostridium difficile toxin A (TcdA). TcdA is a 300 kDa single-chain protein, which glucosylates and thereby inactivates small GTPases of the Rho family (Rho, Rac and Cdc42). The effect of TcdA-catalysed glucosylation of the Rho GTPases is well known: reorganization of the actin cytoskeleton with accompanying morphological changes in cells, leading to complete rounding of cells and destruction of the intestinal barrier function.

View Article and Find Full Text PDF