The glycoprotein G of lyssaviruses is the major determinant of virus pathogenicity and serves as a target for immunological responses to virus infections. However, assessment of the exact contribution of lyssavirus G proteins to observed differences in the pathogenicity of lyssavirus species is challenging, since the direct comparison of natural lyssaviruses does not allow specific ascription to individual virus proteins or domains. Here we describe the generation and characterization of recombinant rabies viruses (RABV) that express chimeric G proteins comprising of a RABV cytoplasma domain fused to transmembrane and ectodomain G sequences of a virulent RABV (challenge virus standard; CVS-11) or two European bat lyssaviruses (EBLV- and EBLV-2).
View Article and Find Full Text PDFAfter primary replication at the site of entry into the host, alphaherpesviruses infect and establish latency in neurons. To this end, they are transported within axons retrograde from the periphery to the cell body for replication and in an anterograde direction to synapses for infection of higher-order neurons or back to the periphery. Retrograde transport of incoming nucleocapsids is well documented.
View Article and Find Full Text PDFThe membrane protein encoded by the US9 gene of alphaherpesviruses plays an important role during virion assembly and transport in neurons. Here, we demonstrate that in herpes simplex virus type 1 (HSV-1) strain KOS, due to base substitutions, the predicted TATA-box of US9 is mutated, and a premature stop is present at codon 58 of US9, which contains 91 codons in other HSV-1 strains. The TATA-box mutation also removes the native stop codon of the adjacent US8A gene, leading to extension of the coding region from 160 to 191 codons.
View Article and Find Full Text PDFA hallmark of alphaherpesviruses is their capacity to be neuroinvasive and establish latent infections in neurons. After primary replication in epithelial cells at the periphery, entry into nerve endings occurs, followed by retrograde transport of nucleocapsids to the nucleus where viral transcription, genome replication, and nucleocapsid formation take place. Translocation of nucleocapsids to the cytoplasm is followed by axonal transport to infect synaptically linked neurons.
View Article and Find Full Text PDF