Publications by authors named "Alexandra N Kolberg-Edelbrock"

Cell therapies offer great promise in the treatment of diseases and tissue regeneration, but their clinical use has many challenges including survival, optimal performance in their intended function, or localization at sites where they are needed for effective outcomes. We report here on a method to coat a biodegradable matrix of biomimetic nanofibers on single cells that could have specific functions ranging from cell signaling to targeting and helping cells survive when used for therapies. The fibers are composed of peptide amphiphile (PA) molecules that self-assemble into supramolecular nanoscale filaments.

View Article and Find Full Text PDF

The extracellular matrix is a dynamic framework bearing chemical and morphological cues that support many cellular functions, and artificial analogs with well-defined chemistry are of great interest for biomedical applications. Herein, we describe hierarchical, extracellular-matrix-mimetic microgels, termed "superbundles" (SBs) composed of peptide amphiphile (PA) supramolecular nanofiber networks created using flow-focusing microfluidic devices. We explore the effects of altered flow rate ratio and PA concentration on the ability to create SBs and develop design rules for producing SBs with both cationic and anionic PA nanofibers and gelators.

View Article and Find Full Text PDF

Human induced pluripotent stem cell (hiPSC) technologies offer a unique resource for modeling neurological diseases. However, iPSC models are fraught with technical limitations including abnormal aggregation and inefficient maturation of differentiated neurons. These problems are in part due to the absence of synergistic cues of the native extracellular matrix (ECM).

View Article and Find Full Text PDF