Proc Natl Acad Sci U S A
December 2024
Expansions of simple tandem repeats are responsible for almost 50 human diseases, the majority of which are severe, degenerative, and not currently treatable or preventable. In this review, we first describe the molecular mechanisms of repeat-induced toxicity, which is the connecting link between repeat expansions and pathology. We then survey alternative DNA structures that are formed by expandable repeats and review the evidence that formation of these structures is at the core of repeat instability.
View Article and Find Full Text PDFFriedreich's ataxia (FRDA) is a human hereditary disease caused by the presence of expanded (GAA) repeats in the first intron of the gene [V. Campuzano , 271, 1423-1427 (1996)]. In somatic tissues of FRDA patients, (GAA) repeat tracts are highly unstable, with contractions more common than expansions [R.
View Article and Find Full Text PDFExpansion of simple DNA repeats is responsible for numerous hereditary diseases in humans. The role of DNA replication, repair and transcription in the expansion process has been well documented. Here we analyzed, in a yeast experimental system, the role of RNA-DNA hybrids in genetic instability of long (GAA)n repeats, which cause Friedreich's ataxia.
View Article and Find Full Text PDFWe selected and investigated nine G-quadruplex (G4)-forming aptamers originally designed against different proteins involved in the regulation of cellular proliferation (STAT3, nucleolin, TOP1, SP1, VEGF, and SHP-2) and considered to be potential anticancer agents. We showed that under physiological conditions all the aptamers form stable G4s of different topology. G4 aptamers designed against STAT3, nucleolin and SP1 inhibit STAT3 transcriptional activity in human breast adenocarcinoma MCF-7 cells, and all the studied aptamers inhibit TOP1-mediated relaxation of supercoiled plasmid DNA.
View Article and Find Full Text PDF