Proc Natl Acad Sci U S A
January 2025
We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.
View Article and Find Full Text PDFRecent advances in neural recording technology allow simultaneously recording action potentials from hundreds to thousands of neurons in awake, behaving animals. However, characterizing spike patterns in the resulting data, and linking these patterns to behaviour, remains a challenging task. The lack of a rigorous mathematical language for variable numbers of events (spikes) emitted by multiple agents (neurons) is an important limiting factor.
View Article and Find Full Text PDFAlthough temporal coding through spike-time patterns has long been of interest in neuroscience, the specific structures that could be useful for spike-time codes remain highly unclear. Here, we introduce an analytical approach, using techniques from discrete mathematics, to study spike-time codes. As an initial example, we focus on the phenomenon of "phase precession" in the rodent hippocampus.
View Article and Find Full Text PDF