Publications by authors named "Alexandra Moine Franel"

Summary: Protein Interaction Explorer (PIE) is a new web-based tool integrated to our database iPPI-DB, specifically crafted to support structure-based drug discovery initiatives focused on protein-protein interactions (PPIs). Drawing upon extensive structural data encompassing thousands of heterodimer complexes, including those with successful ligands, PIE provides a comprehensive suite of tools dedicated to aid decision-making in PPI drug discovery. PIE enables researchers/bioinformaticians to identify and characterize crucial factors such as the presence of binding pockets or functional binding sites at the interface, predicting hot spots, and foreseeing similar protein-embedded pockets for potential repurposing efforts.

View Article and Find Full Text PDF

This dataset represents a collection of pocket-centric structural data related to protein-protein interactions (PPIs) and PPI-related ligand binding sites. The dataset includes high-quality structural information on more than 23,000 pockets, 3,700 proteins on more than 500 organisms, and nearly 3500 ligands that can aid researchers in the fields of bioinformatics, structural biology, and drug discovery. It encompasses a diverse set of PPI complexes with more than 1,700 unique protein families including some with associated ligands, enabling detailed investigations into molecular interactions at the atomic level.

View Article and Find Full Text PDF

Motivation: Protein-protein interactions (PPIs) are key elements in numerous biological pathways and the subject of a growing number of drug discovery projects including against infectious diseases. Designing drugs on PPI targets remains a difficult task and requires extensive efforts to qualify a given interaction as an eligible target. To this end, besides the evident need to determine the role of PPIs in disease-associated pathways and their experimental characterization as therapeutics targets, prediction of their capacity to be bound by other protein partners or modulated by future drugs is of primary importance.

View Article and Find Full Text PDF

Motivation: One avenue to address the paucity of clinically testable targets is to reinvestigate the druggable genome by tackling complicated types of targets such as Protein-Protein Interactions (PPIs). Given the challenge to target those interfaces with small chemical compounds, it has become clear that learning from successful examples of PPI modulation is a powerful strategy. Freely accessible databases of PPI modulators that provide the community with tractable chemical and pharmacological data, as well as powerful tools to query them, are therefore essential to stimulate new drug discovery projects on PPI targets.

View Article and Find Full Text PDF