In this research, we aimed to assess the possibility of using surrogate modeling methods to replace time-consuming calculations related to modeling of COVID-19 dynamics. The Gaussian process regression (GPR) was used as a surrogate to replace detailed simulations by a COVID-19 multiagent model. Experiments were conducted with various kernels, as a result, in accordance with the quality metrics of the models, kernels were identified in which the surrogate gives the most accurate result (Rational Quadratic kernel and Additive kernel).
View Article and Find Full Text PDF