Publications by authors named "Alexandra Maldonado Lopez"

-methyladenosine (mA) is the most abundant modification on messenger RNAs (mRNAs) and is catalyzed by methyltransferase-like protein 3 (Mettl3). To understand the role of mA in a self-renewing somatic tissue, we deleted in epidermal progenitors in vivo. Mice lacking demonstrate marked features of dysfunctional development and self-renewal, including a loss of hair follicle morphogenesis and impaired cell adhesion and polarity associated with oral ulcerations.

View Article and Find Full Text PDF

Dynamic modifications on RNA, frequently termed both, "RNA epigenetics" and "epitranscriptomics", offer one of the most exciting emerging areas of gene regulation and biomedicine. Similar to chromatin-based epigenetic mechanisms, writers, readers, and erasers regulate both the presence and interpretation of these modifications, thereby adding further nuance to the control of gene expression. In particular, the most abundant modification on mRNAs, N-methyladenosine (mA), catalyzed by methyltransferase-like 3 (METTL3) has been shown to play a critical role in self-renewing somatic epithelia, fine-tuning the balance between development, differentiation, and cancer, particularly in the case of squamous cell carcinomas (SCCs), which in aggregate, outnumber all other human cancers.

View Article and Find Full Text PDF

Self-renewing somatic tissues depend upon the proper balance of chromatin-modifying enzymes to coordinate progenitor cell maintenance and differentiation, disruption of which can promote carcinogenesis. As a result, drugs targeting the epigenome hold significant therapeutic potential. The histone demethylase, LSD1 (KDM1A), is overexpressed in numerous cancers, including epithelial cancers; however, its role in the skin is virtually unknown.

View Article and Find Full Text PDF