Objective: Sporadic inclusion body myositis (sIBM) pathogenesis is unknown; however, rimmed vacuoles (RVs) are a constant feature. We propose to identify proteins that accumulate within RVs.
Methods: RVs and intact myofibers were laser microdissected from skeletal muscle of 18 sIBM patients and analyzed by a sensitive mass spectrometry approach using label-free spectral count-based relative protein quantification.
Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X).
View Article and Find Full Text PDFProtein inference connects the peptide spectrum matches (PSMs) obtained from database search engines back to proteins, which are typically at the heart of most proteomics studies. Different search engines yield different PSMs and thus different protein lists. Analysis of results from one or multiple search engines is often hampered by different data exchange formats and lack of convenient and intuitive user interfaces.
View Article and Find Full Text PDFFilaminopathy is a subtype of myofibrillar myopathy caused by mutations in FLNC, the gene encoding filamin C, and histologically characterized by pathologic accumulation of several proteins within skeletal muscle fibers. With the aim to get new insights in aggregate composition, we collected aggregates and control tissue from skeletal muscle biopsies of six myofibrillar myopathy patients harboring three different FLNC mutations by laser microdissection and analyzed the samples by a label-free mass spectrometry approach. A total of 390 proteins were identified, and 31 of those showed significantly higher spectral indices in aggregates compared with patient controls with a ratio >1.
View Article and Find Full Text PDF