Publications by authors named "Alexandra Macaskill"

We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.

View Article and Find Full Text PDF

Detection of specific DNA sequences is central to modern molecular biology and also to molecular diagnostics where identification of a particular disease is based on nucleic acid identification. Many methods exist, and fluorescence spectroscopy dominates the detection technologies employed with different assay formats. This study demonstrates the use of surface-enhanced resonance Raman scattering (SERRS) to detect specific DNA sequences when coupled with modified SERRS-active probes that have been designed to modify the affinity of double- and single-stranded DNA for the surface of silver nanoparticles resulting in discernible differences in the SERRS which can be correlated to the specific DNA hybridization event.

View Article and Find Full Text PDF
Article Synopsis
  • SERRS (surface-enhanced resonance Raman scattering) is a highly sensitive technique for detecting labelled DNA sequences, often surpassing traditional fluorescence methods.
  • DNA needs to be modified with SERRS labels because it cannot enhance signals on its own due to poor adsorption on surfaces like metallic nanoparticles.
  • The study demonstrates effective detection of DNA through SERRS using various commercial labels, leveraging nanoparticle aggregation to identify specific DNA sequences, which could improve molecular diagnostics.
View Article and Find Full Text PDF

Surface-enhanced resonance Raman scattering (SERRS) from silver nanoparticles using 514.5-nm excitation has been shown to offer huge potential for applications in highly sensitive multiplexed DNA assays. If the technique is to be applied to real biological samples and integrated with other methods, then the use of gold nanoparticles and longer wavelengths of excitation are desirable.

View Article and Find Full Text PDF

Careful control of surface chemistry results in strong surface enhanced resonance Raman scattering from dye-labelled oligonucleotides assembled on nanostructured gold surfaces, releasing their potential as reliable enhancing surfaces.

View Article and Find Full Text PDF

In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device.

View Article and Find Full Text PDF