Background & Aims: Hepatocellular carcinoma (HCC) frequently undergoes regional chromosomal amplification, resulting in elevated gene expression levels. We aimed to elucidate the role of these poorly understood genetic changes by employing CRISPR activation (CRISPRa) screening in mouse livers to identify which genes within these amplified loci are cancer driver genes.
Methods: We used data from The Cancer Genome Atlas (TCGA) to identify that frequently copy number-amplified and upregulated genes all reside on human Chromosomes 1q and 8q.
CRISPR is a gene editing tool adapted from naturally occurring defense systems from bacteria. It is a technology that is revolutionizing the interrogation of gene functions in driving liver disease, especially through genetic screens and by facilitating animal knockout and knockin models. It is being used in models of liver disease to identify which genes are critical for liver pathology, especially in genetic liver disease, hepatitis, and in cancer initiation and progression.
View Article and Find Full Text PDFEfforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox).
View Article and Find Full Text PDFA very promising direction in the development of anticancer drugs is inhibiting the molecular pathways that keep cancer cells alive and able to metastasize. Copper and iron are two essential metals that play significant roles in the rapid proliferation of cancer cells and several chelators have been studied to suppress the bioavailability of these metals in the cells. This review discusses the major contributions that Cu and Fe play in the progression and spreading of cancer and evaluates select Cu and Fe chelators that demonstrate great promise as anticancer drugs.
View Article and Find Full Text PDFThe recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV).
View Article and Find Full Text PDF