Publications by authors named "Alexandra M Padilla"

Existing sensors for measuring dissolved methane in situ suffer from excessively slow response times or large size and complexity. The technology reported here realizes improvements by utilizing a hollow core optical fiber (HFC) as the detection cell in an underwater infrared laser spectrometer. The sensor operates by using a polymer membrane inlet to continuously extract dissolved gas from water.

View Article and Find Full Text PDF

The study of gas bubbles in liquid media is of importance in many areas of research. Gas bubbles are often studied using in situ measurement techniques; however, acoustic inversion techniques have also been used to extract physical properties of gas bubbles. These inversion techniques rely on existing analytical scattering models; however, these models often assume that the gas bubbles are spherical in shape and have an equivalent bubble radius, a, that is small compared to the incident acoustic wavelength (ka ≪ 1), which is not always valid.

View Article and Find Full Text PDF