Guanidinium organosulfonate (GS) hydrogen-bonded host frameworks were used to trap α-halopropiophenones and α-halocyclooctanones to determine their molecular structure by single crystal X-ray diffraction. The majority of encapsulated guest molecules adopted conformations expected from computational analysis and stereochemical outcomes of Grignard reactions.
View Article and Find Full Text PDFSingle crystal X-ray diffraction (SCXRD) is arguably the most definitive method for molecular structure determination, but it is often challenged by compounds that are liquids or oils at room temperature or do not form crystals adequate for analysis. Our laboratory previously reported a simple, cost-effective, single-step crystallization method based on guanidinium organosulfonate (GS) hydrogen bonded frameworks for structure determination of a wide range of encapsulated guest molecules, including assignment of the absolute configuration of chiral centers. Herein, we expand on those results and report a head-to-head comparison of the GS method with adamantoid "molecular chaperones", which have been reported to be useful hosts for structure determination.
View Article and Find Full Text PDFDuring the past three decades, the ability of guanidinium arenesulfonate host frameworks to encapsulate a wide range of guests has been amply demonstrated, with more than 700 inclusion compounds realized. Herein, we report crystalline inclusion compounds based on a new aliphatic host, guanidinium cyclohexanemonosulfonate, which surprisingly exhibits four heretofore unobserved architectures, as described by the projection topologies of the organosulfonate residues above and below hydrogen-bonded guanidinium sulfonate sheets. The inclusion compounds adopt a layer motif of guanidinium sulfonate sheets interleaved with guest molecules, resembling a mille-feuille pastry.
View Article and Find Full Text PDFThe addition of the highly reactive reagent allylmagnesium halide to α-substituted acyclic chiral ketones proceeded with high stereoselectivity. The stereoselectivity cannot be analyzed by conventional stereochemical models because these reactions do not conform to the requirements of those models. Instead, the stereoselectivity arises from the approach of the nucleophile to the most accessible diastereofaces of the lowest-energy conformations of the ketones.
View Article and Find Full Text PDF