Publications by authors named "Alexandra M Baskin"

Background: Glioblastoma (GBM) uses Glut3 and/or Glut14 and the Leloir pathway to catabolize D-Galactose (Gal). UDP-4-deoxy-4-fluorogalactose (UDP-4DFG) is a potent inhibitor of the two key enzymes, UDP-galactose-4-epimerase (GALE) and UDP-Glucose 6-dehydrogenase (UGDH), involved in Gal metabolism and in glycan synthesis. The Gal antimetabolite 4-deoxy-4-fluorogalactose (4DFG) is a good substrate for Glut3/Glut14 and acts as a potent glioma chemotherapeutic.

View Article and Find Full Text PDF

Introduction: High-grade glioma (HGG) is one of the most deadly and difficult cancers to treat. Despite intense research efforts, there has not been a significant breakthrough in treatment outcomes since the early 2000's. Anti-glioma gene therapy has demonstrated promise in preclinical studies and is under investigation in numerous clinical trials.

View Article and Find Full Text PDF

Based on the postulate that glioblastoma (GBM) tumors generate anti-inflammatory prostaglandins and bile salts to gain immune privilege, we analyzed 712 tumors in-silico from three GBM transcriptome databases for prostaglandin and bile synthesis/signaling enzyme-transcript markers. A pan-database correlation analysis was performed to identify cell-specific signal generation and downstream effects. The tumors were stratified by their ability to generate prostaglandins, their competency in bile salt synthesis, and the presence of bile acid receptors nuclear receptor subfamily 1, group H, member 4 (NR1H4) and G protein-coupled bile acid receptor 1 (GPBAR1).

View Article and Find Full Text PDF

Regulatory T-cells (Tregs) are immunosuppressive T-cells, which arrest immune responses to 'Self' tissues. Some immunosuppressive Tregs that recognize seminal epitopes suppress immune responses to the proteins in semen, in both men and women. We postulated that GBMs express reproductive-associated proteins to manipulate reproductive Tregs and to gain immune privilege.

View Article and Find Full Text PDF

Background: Glioblastoma (GBM) can use metabolic fuels other than glucose (Glc). The ability of GBM to use galactose (Gal) as a fuel via the Leloir pathway is investigated.

Methods: Gene transcript data were accessed to determine the association between expression of genes of the Leloir pathway and patient outcomes.

View Article and Find Full Text PDF

Malignant gliomas, including glioblastomas, are extremely difficult to treat. The median survival for glioblastoma patients with optimal therapeutic intervention is 15 months. We developed a novel MAO-B-selectively activated prodrug, N,N-bis(2-chloroethyl)-2-(1-methyl-1,2,3,6-tetrahydropyridin-4-yl)propanamide (MP-MUS), for the treatment of gliomas based on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).

View Article and Find Full Text PDF