Publications by authors named "Alexandra Lanot"

The need for circular textiles has led to an interest in the production of biologically derived materials, generating new research into the bioproduction of textiles through design and interdisciplinary approaches. Bacterial cellulose has been produced directly from fermentation into sheets but not yet investigated in terms of producing filaments directly from fermentation. This leaves a wealth of material qualities unexplored.

View Article and Find Full Text PDF

Demand for cannabinoid is growing, with the global market expected to reach $9.69 billion by 2025. Understanding how chemical composition changes in hemp at different harvest times is crucial to maximizing this industrial crop value.

View Article and Find Full Text PDF

Growth temperature and light intensity are major drivers of phenolic accumulation in Lotus corniculatus resulting in major changes in carbon partitioning which significantly affects tissue digestibility and forage quality. The response of plant growth, phenolic accumulation and tissue digestibility to light and temperature was determined in clonal plants of three genotypes of Lotus corniculatus (birdsfoot trefoil) cv Leo, with low, intermediate or high levels of proanthocyanidins (condensed tannins). Plants were grown from 10 °C to 30 °C, or at light intensities from 20 to 500 µm m s.

View Article and Find Full Text PDF

To maximize the sugar release from sugarcane bagasse, a high-resolution Fractional Factorial Design (FFD) was combined with a Central Composite Orthogonal (CCO) design to simultaneously evaluate a wide range of variables for alkaline pretreatment (NaOH: 0.1-1 mol/L, temperature: 100-220 °C, and time: 20-80 min) and enzymatic saccharification (enzyme loading: 2.5-17.

View Article and Find Full Text PDF

The phenylpropanoid pathway is used in biosynthesis of a wide range of soluble secondary metabolites including hydroxycinnamic acid esters, flavonoids and the precursors of lignin and lignans. In Arabidopsis thaliana a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases (GTs) that glucosylate phenylpropanoids in vitro. This study explores the effect of constitutively over-expressing two of these GTs (UGT72E1 and E3) in planta using the CaMV-35S promoter to determine whether phenylpropanoid homeostasis can be altered in a similar manner to that achieved by over-expression of UGT72E2 as previously reported.

View Article and Find Full Text PDF

Dietary intake of phytosterols (plant sterols) has been shown to be effective in reducing blood cholesterol levels, thereby reducing the risk of cardiovascular disease. Phytosterols are most commonly sourced from vegetable oils, where they are present as minor components. We report here the generation of transgenic tobacco seeds substantially enhanced in phytosterol content by the expression of a modified form of one of the key sterol biosynthetic enzymes, 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR).

View Article and Find Full Text PDF

The phenylpropanoid pathway in plants leads to the synthesis of a wide range of soluble secondary metabolites, many of which accumulate as glycosides. In Arabidopsis, a small cluster of three closely related genes, UGT72E1-E3, encode glycosyltransferases shown to glucosylate several phenylpropanoids in vitro, including monolignols, hydroxycinnamic acids and hydroxycinnamic aldehydes. The role of these genes in planta has now been investigated through genetically downregulating the expression of individual genes or silencing the entire cluster.

View Article and Find Full Text PDF

The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development.

View Article and Find Full Text PDF