The combinations of BRAF inhibitor-based targeted therapies with immune checkpoint inhibitors currently represent less common therapeutic approaches in advanced melanoma. The aim of this study was to assess the safety and efficacy of currently available melanoma treatments by conducting a systematic review and network meta-analysis. Four databases were systematically searched for randomized clinical studies that included patients with advanced/metastatic melanoma receiving chemotherapy, immune checkpoint inhibitors, BRAF/MEK inhibitor therapy, or combinations thereof.
View Article and Find Full Text PDFIntroduction: While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy.
Methods: Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders.
While Immune checkpoint inhibition (ICI) therapy shows significant efficacy in metastatic melanoma, only about 50% respond, lacking reliable predictive methods. We introduce a panel of six proteins aimed at predicting response to ICI therapy. Evaluating previously reported proteins in two untreated melanoma cohorts, we used a published predictive model (EaSIeR score) to identify potential proteins distinguishing responders and non-responders.
View Article and Find Full Text PDFUnlabelled: Microphthalmia-associated transcription factor (MITF) plays pivotal roles in melanocyte development, function, and melanoma pathogenesis. MITF amplification occurs in melanoma and has been associated with resistance to targeted therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage.
View Article and Find Full Text PDF