Publications by authors named "Alexandra Kruscha"

We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate ('disorder'). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance.

View Article and Find Full Text PDF

Synchronous activity in populations of neurons potentially encodes special stimulus features. Selective readout of either synchronous or asynchronous activity allows formation of two streams of information processing. Theoretical work predicts that such a synchrony code is a fundamental feature of populations of spiking neurons if they operate in specific noise and stimulus regimes.

View Article and Find Full Text PDF

We consider a homogeneous population of stochastic neurons that are driven by weak common noise (stimulus). To capture and analyze the joint firing events within the population, we introduce the partial synchronous output of the population. This is a time series defined by the events that at least a fixed fraction γ∈[0,1] of the population fires simultaneously within a small time interval.

View Article and Find Full Text PDF
Article Synopsis
  • The text includes a collection of research topics related to neural circuits, mental disorders, and computational models in neuroscience.
  • It features various studies examining the functional advantages of neural heterogeneity, propagation waves in the visual cortex, and dendritic mechanisms crucial for precise neuronal functioning.
  • The research covers a range of applications, from understanding complex brain rhythms to modeling auditory processing and investigating the effects of neural regulation on behavior.
View Article and Find Full Text PDF

We study the probability distribution of the number of synchronous action potentials (spike count) in a model network consisting of a homogeneous neural population that is driven by a common time-dependent stimulus. We derive two analytical approximations for the count statistics, which are based on linear response theory and hold true for weak input correlations. Comparison to numerical simulations of populations of integrate-and-fire neurons in different parameter regimes reveals that our theory correctly predicts how much a weak common stimulus increases the probability of common firing and of common silence in the neural population.

View Article and Find Full Text PDF

We study the random concatenation of slightly different two-dimensional Hamiltonian maps with a mixed phase space. We consider a regular island whose fixed point is identical for all maps. Trajectories of the concatenated maps near this fixed point are no longer confined to invariant tori.

View Article and Find Full Text PDF