Persistent stuttering is a prevalent neurodevelopmental speech disorder, which presents with involuntary speech blocks, sound and syllable repetitions, and sound prolongations. Affected individuals often struggle with negative feelings, elevated anxiety, and low self-esteem. Neuroimaging studies frequently link persistent stuttering with cortical alterations and dysfunctional cortico-basal ganglia-thalamocortical loops; dMRI data also point toward connectivity changes of the superior longitudinal fasciculus (SLF) and the frontal aslant tract (FAT).
View Article and Find Full Text PDFObjective: The neurophysiological dynamics of the occurrence of a stuttering event are largely unknown. This sensor-level EEG study investigated whether already the intention to speak alters the formation of the speech production network in stuttering.
Methods: We studied alpha (8-13 Hz), low beta (15-25 Hz) and high beta (25-30 Hz) power modulation in 19 adults with developmental stuttering (AWS) and 19 fluently speaking control participants during speech intention.
Fluency-shaping enhances the speech fluency of persons who stutter, yet underlying conditions and neuroplasticity-related mechanisms are largely unknown. While speech production-related brain activity in stuttering is well studied, it is unclear whether therapy repairs networks of altered sensorimotor integration, imprecise neural timing and sequencing, faulty error monitoring, or insufficient speech planning. Here, we tested the impact of one-year fluency-shaping therapy on resting-state fMRI connectivity within sets of brain regions subserving these speech functions.
View Article and Find Full Text PDFOriginary neurogenic, non-syndromatic stuttering has been linked to a dysfunctional sensorimotor system. Studies have demonstrated that adults who stutter (AWS) perform poorly at speech and finger motor tasks and learning (e.g.
View Article and Find Full Text PDFPersistent developmental stuttering (PDS) disrupts speech fluency in about 1% of adults. Although many models of speech production assume an intact sensory feedback from the speech organs to the brain, very little is actually known about the integrity of their sensory representation in PDS. Here, we studied somatosensory evoked potentials (SEPs) in adults who stutter (AWS), with the aim of probing the integrity of sensory pathways.
View Article and Find Full Text PDF