Publications by authors named "Alexandra Kaldeli-Kerou"

Copper-based bactericides have appeared as a new tool in crop protection and offer an effective solution to combat bacterial resistance. In this work, two copper nanoparticle products that were previously synthesized and evaluated against major bacterial and fungal pathogens were tested on their ability to control the bacterial spot disease of tomato. Growth of pv.

View Article and Find Full Text PDF

A lot of effort has been dedicated recently to provide a better insight into the mechanism of the antibacterial activity of silver nanoparticles (AgNPs) colloidal suspensions and their released silver ionic counterparts. However, there is no consistency regarding whether the antibacterial effect displayed at cellular level originates from the AgNPs or their ionic constitutes. To address this issue, three colloidal suspensions exhibiting different ratios of AgNPs/silver ions were synthesized by a wet chemistry method in conjunction with tangential flow filtration, and were characterized and evaluated for their antimicrobial properties against two gram-negative, () and (), and two gram-positive, () and (), bacterial strains.

View Article and Find Full Text PDF

Olive crop is frequently treated with copper fungicides to combat foliar and fruit diseases such as olive leaf spot caused by and anthracnose caused by spp. The replacement of copper-based products with more eco-friendly alternatives is a priority. Metal nanoparticles synthesized in several ways have recently revolutionized crop protection with applications against important crop pathogens.

View Article and Find Full Text PDF

Copper nanoparticles (CuNPs) can offer an alternative to conventional copper bactericides and possibly slow down the development of bacterial resistance. This will consequently lower the accumulation rate of copper to soil and water and lower the environmental and health burden imposed by copper application. Physical and chemical methods have been reported to synthesize CuNPs but their use as bactericides in plants has been understudied.

View Article and Find Full Text PDF