No crystal structure at ambient pressure is known for tetramethylsilane, Si(CH(3))(4), which is used as a standard in NMR spectroscopy. Possible crystal structures were predicted by global lattice-energy minimizations using force-field methods. The lowest-energy structure corresponds to the high-pressure room-temperature phase (Pa3, Z = 8).
View Article and Find Full Text PDFFor SiBr4 no crystal structures have been reported yet. In this work the crystal structures of SiBr4 were predicted by global lattice-energy minimizations using force-field methods. Over an energy range of 5 kJ mol(-1) above the global minimum ten possible structures were found.
View Article and Find Full Text PDFThe crystal structure of the nanocrystalline alpha phase of Pigment Yellow 213 (P.Y. 213) was solved by a combination of single-crystal electron diffraction and X-ray powder diffraction, despite the poor crystallinity of the material.
View Article and Find Full Text PDFWe report on the organization and outcome of the fourth blind test of crystal structure prediction, an international collaborative project organized to evaluate the present state in computational methods of predicting the crystal structures of small organic molecules. There were 14 research groups which took part, using a variety of methods to generate and rank the most likely crystal structures for four target systems: three single-component crystal structures and a 1:1 cocrystal. Participants were challenged to predict the crystal structures of the four systems, given only their molecular diagrams, while the recently determined but as-yet unpublished crystal structures were withheld by an independent referee.
View Article and Find Full Text PDF