Microphysiological systems play a pivotal role in progressing toward a global paradigm shift in drug development. Here, we designed a four-organ-chip interconnecting miniaturized human intestine, liver, brain and kidney equivalents. All four organ models were predifferentiated from induced pluripotent stem cells from the same healthy donor and integrated into the microphysiological system.
View Article and Find Full Text PDFPro- and anti-inflammatory effector functions of IgG antibodies (Abs) depend on their subclass and Fc glycosylation pattern. Accumulation of non-galactosylated (agalactosylated; G0) IgG Abs in the serum of rheumatoid arthritis and systemic lupus erythematosus (SLE) patients reflects severity of the diseases. In contrast, sialylated IgG Abs are responsible for anti-inflammatory effects of the intravenous immunoglobulin (pooled human serum IgG from healthy donors), administered in high doses (2 g/kg) to treat autoimmune patients.
View Article and Find Full Text PDFSystemic absorption and metabolism of drugs in the small intestine, metabolism by the liver as well as excretion by the kidney are key determinants of efficacy and safety for therapeutic candidates. However, these systemic responses of applied substances lack in most in vitro assays. In this study, a microphysiological system maintaining the functionality of four organs over 28 days in co-culture has been established at a minute but standardized microsystem scale.
View Article and Find Full Text PDFThe ever growing amount of new substances released onto the market and the limited predictability of current in vitro test systems has led to a high need for new solutions for substance testing. Many drugs that have been removed from the market due to drug-induced liver injury released their toxic potential only after several doses of chronic testing in humans. However, a controlled microenvironment is pivotal for long-term multiple dosing experiments, as even minor alterations in extracellular conditions may greatly influence the cell physiology.
View Article and Find Full Text PDFSystemic repeated dose safety assessment and systemic efficacy evaluation of substances are currently carried out on laboratory animals and in humans due to the lack of predictive alternatives. Relevant international regulations, such as OECD and ICH guidelines, demand long-term testing and oral, dermal, inhalation, and systemic exposure routes for such evaluations. So-called "human-on-a-chip" concepts are aiming to replace respective animals and humans in substance evaluation with miniaturized functional human organisms.
View Article and Find Full Text PDFAntigen-specific Abs are able to enhance or suppress immune responses depending on the receptors that they bind on immune cells. Recent studies have shown that pro- or antiinflammatory effector functions of IgG Abs are also regulated through their Fc N-linked glycosylation patterns. IgG Abs that are agalactosylated (non-galactosylated) and asialylated are proinflammatory and induced by the combination of T cell-dependent (TD) protein antigens and proinflammatory costimulation.
View Article and Find Full Text PDFBackground: Under inflammatory conditions, T cell-dependent (TD) protein antigens induce proinflammatory T- and B-cell responses. In contrast, tolerance induction by TD antigens without costimulation triggers the development of regulatory T cells. Under both conditions, IgG antibodies are generated, but whether they have different immunoregulatory functions remains elusive.
View Article and Find Full Text PDFThe role of TLR9 in the development of the autoimmune disease systemic lupus erythematosus is controversial. In different mouse models of the disease, loss of TLR9 abolishes the generation of anti-nucleosome IgG autoantibodies but at the same time exacerbates lupus disease. However, the TLR9-dependent tolerance mechanism is unknown.
View Article and Find Full Text PDF