Publications by authors named "Alexandra K Diem"

Perfusion is one of the most important processes maintaining organ health. From a computational perspective, however, perfusion is among the least-studied physiological processes of the heart. The recent development of novel nanoparticle-based targeted cardiac therapy calls for novel simulation methods that can provide insights into the distribution patterns of therapeutic agents within the heart tissue.

View Article and Find Full Text PDF

The mechanisms behind the clearance of soluble waste from deep within the parenchyma of the brain remain unclear. Experimental evidence reveals that one pathway for clearance of waste, termed intra-mural peri-arterial drainage (IPAD), is the rapid drainage of interstitial fluid along basement membranes (BM) of the smooth muscle cells of cerebral arteries; failure of IPAD is closely associated with the pathology of Alzheimer's disease (AD), but its driving mechanism remains unclear. We have previously shown that arterial pulsations generated by the heart beat are not strong enough to drive IPAD.

View Article and Find Full Text PDF

Computer science offers a large set of tools for prototyping, writing, running, testing, validating, sharing and reproducing results; however, computational science lags behind. In the best case, authors may provide their source code as a compressed archive and they may feel confident their research is reproducible. But this is not exactly true.

View Article and Find Full Text PDF

Alzheimer's Disease (AD) is the most common form of dementia and to date there is no cure or efficient prophylaxis. The cognitive decline correlates with the accumulation of amyloid-β (β) in the walls of capillaries and arteries. Our group has demonstrated that interstitial fluid and β are eliminated from the brain along the basement membranes of capillaries and arteries, the intramural periarterial drainage (IPAD) pathway.

View Article and Find Full Text PDF

The accumulation of soluble and insoluble amyloid-β (Aβ) in the brain indicates failure of elimination of Aβ from the brain with age and Alzheimer's disease (AD). There is a variety of mechanisms for elimination of Aβ from the brain. They include the action of microglia and enzymes together with receptor-mediated absorption of Aβ into the blood and periarterial lymphatic drainage of Aβ.

View Article and Find Full Text PDF

Alzheimer's disease is characterized by accumulation of amyloid-β (Aβ) in the brain and in the walls of cerebral arteries. The focus of this work is on clearance of Aβ along artery walls, the failure of which may explain the accumulation of Aβ in Alzheimer's disease. Periarterial basement membranes form continuous channels from cerebral capillaries to major arteries on the surface of the brain.

View Article and Find Full Text PDF