Authorization of the Matrix-M (MM)-adjuvanted R21 vaccine by three countries and its subsequent endorsement by the World Health Organization for malaria prevention in children are a milestone in the fight against malaria. Yet, our understanding of the innate and adaptive immune responses elicited by this vaccine remains limited. Here, we compared three clinically relevant adjuvants [3M-052 + aluminum hydroxide (Alum) (3M), a TLR7/8 agonist formulated in Alum; GLA-LSQ, a TLR4 agonist formulated in liposomes with QS-21; and MM, the now-approved adjuvant for R21] for their capacity to induce durable immune responses to R21 in macaques.
View Article and Find Full Text PDFAlthough licensed vaccines against influenza virus have been successful in reducing pathogen-mediated disease, they have been less effective at preventing viral infection of the airways and current seasonal updates to influenza vaccines do not always successfully accommodate viral drift. Most licensed influenza and recently licensed RSV vaccines are administered via the intramuscular route. Alternative immunisation strategies, such as intranasal vaccinations, and "prime-pull" regimens, may deliver a more sterilising form of protection against respiratory viruses.
View Article and Find Full Text PDFViral haemorrhagic fevers (VHF) pose a significant threat to human health. In recent years, VHF outbreaks caused by Ebola, Marburg and Lassa viruses have caused substantial morbidity and mortality in West and Central Africa. In 2022, an Ebola disease outbreak in Uganda caused by Sudan virus resulted in 164 cases with 55 deaths.
View Article and Find Full Text PDFMany vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here.
View Article and Find Full Text PDFEffective vaccines have reduced the morbidity and mortality caused by severe acute respiratory syndrome coronavirus-2 infection; however, the elderly remain the most at risk. Understanding how vaccines generate protective immunity and how these mechanisms change with age is key for informing future vaccine design. Cytotoxic CD8 T cells are important for killing virally infected cells, and vaccines that induce antigen-specific CD8 T cells in addition to humoral immunity provide an extra layer of immune protection.
View Article and Find Full Text PDFBackground: The tick-borne bunyavirus, Crimean-Congo Haemorrhagic Fever virus (CCHFV), can cause severe febrile illness in humans and has a wide geographic range that continues to expand due to tick migration. Currently, there are no licensed vaccines against CCHFV for widespread usage.
Methods: In this study, we describe the preclinical assessment of a chimpanzee adenoviral vectored vaccine (ChAdOx2 CCHF) which encodes the glycoprotein precursor (GPC) from CCHFV.
Emergence from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been facilitated by the rollout of effective vaccines. Successful vaccines generate high-affinity plasma blasts and long-lived protective memory B cells. Here, we show a requirement for T follicular helper (Tfh) cells and the germinal center reaction for optimal serum antibody and memory B cell formation after ChAdOx1 nCoV-19 vaccination.
View Article and Find Full Text PDFTraditional chemical adjuvants remain a practical means of enhancing the immunogenicity of vaccines. Nevertheless, it is recognized that increasing the immunogenicity of viral vectors is challenging. Recently, STING ligands have been shown to enhance the efficacy of different vaccine platforms, but their affectivity on viral-vectored vaccination has not been fully assessed.
View Article and Find Full Text PDFChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirus-vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 has been shown to have 74% vaccine efficacy against symptomatic disease in clinical trials. However, variants of concern (VoCs) have been detected, with substitutions that are associated with a reduction in virus neutralizing antibody titer.
View Article and Find Full Text PDFBackground: There is an ongoing global effort to design, manufacture, and clinically assess vaccines against SARS-CoV-2. Over the course of the ongoing pandemic a number of new SARS-CoV-2 virus isolates or variants of concern (VoC) have been identified containing mutations in key proteins.
Methods: In this study we describe the generation and preclinical assessment of a ChAdOx1-vectored vaccine (AZD2816) which expresses the spike protein of the Beta VoC (B.
Protection from liver-stage malaria requires high numbers of CD8+ T cells to find and kill -infected cells. A new malaria vaccine strategy, prime-target vaccination, involves sequential viral-vectored vaccination by intramuscular and intravenous routes to target cellular immunity to the liver. Liver tissue-resident memory (TRM) CD8+ T cells have been shown to be necessary and sufficient for protection against rodent malaria by this vaccine regimen.
View Article and Find Full Text PDFChAdOx1 nCoV-19 (AZD1222) is a replication-deficient simian adenovirusâ€"vectored vaccine encoding the spike (S) protein of SARS-CoV-2, based on the first published full-length sequence (Wuhan-1). AZD1222 was shown to have 74% vaccine efficacy (VE) against symptomatic disease in clinical trials and over 2.5 billion doses of vaccine have been released for worldwide use.
View Article and Find Full Text PDFVaccines against SARS-CoV-2 are urgently required, but early development of vaccines against SARS-CoV-1 resulted in enhanced disease after vaccination. Careful assessment of this phenomena is warranted for vaccine development against SARS CoV-2. Here we report detailed immune profiling after ChAdOx1 nCoV-19 (AZD1222) and subsequent high dose challenge in two animal models of SARS-CoV-2 mediated disease.
View Article and Find Full Text PDFSeveral vaccines have demonstrated efficacy against SARS-CoV-2 mediated disease, yet there is limited data on the immune response induced by heterologous vaccination regimens using alternate vaccine modalities. Here, we present a detailed description of the immune response, in mice, following vaccination with a self-amplifying RNA (saRNA) vaccine and an adenoviral vectored vaccine (ChAdOx1 nCoV-19/AZD1222) against SARS-CoV-2. We demonstrate that antibody responses are higher in two-dose heterologous vaccination regimens than single-dose regimens.
View Article and Find Full Text PDFis contracted through the consumption of untreated water and contaminated food. The contraction and spread of water-related in resource-poor communities can be reduced by using solar disinfection (SODIS) to treat the water before its consumption. SODIS is a water sanitizing technique that relies on natural sunshine.
View Article and Find Full Text PDFBackground: The spread of SARS-CoV-2 has caused a worldwide pandemic that has affected almost every aspect of human life. The development of an effective COVID-19 vaccine could limit the morbidity and mortality caused by infection and may enable the relaxation of social-distancing measures. Age is one of the most significant risk factors for poor health outcomes after SARS-CoV-2 infection; therefore, it is desirable that any new vaccine candidates elicit a robust immune response in older adults.
View Article and Find Full Text PDFMucosal-associated invariant T (MAIT) cells are innate sensors of viruses and can augment early immune responses and contribute to protection. We hypothesized that MAIT cells may have inherent adjuvant activity in vaccine platforms that use replication-incompetent adenovirus vectors. In mice and humans, ChAdOx1 (chimpanzee adenovirus Ox1) immunization robustly activated MAIT cells.
View Article and Find Full Text PDFClinical development of the COVID-19 vaccine candidate ChAdOx1 nCoV-19, a replication-deficient simian adenoviral vector expressing the full-length SARS-CoV-2 spike (S) protein was initiated in April 2020 following non-human primate studies using a single immunisation. Here, we compared the immunogenicity of one or two doses of ChAdOx1 nCoV-19 in both mice and pigs. Whilst a single dose induced antigen-specific antibody and T cells responses, a booster immunisation enhanced antibody responses, particularly in pigs, with a significant increase in SARS-CoV-2 neutralising titres.
View Article and Find Full Text PDFIn the infectious diseases field, protective immunity against individual virus species or strains does not always confer cross-reactive immunity to closely related viruses, leaving individuals susceptible to disease after exposure to related virus species. This is a significant hurdle in the field of vaccine development, in which broadly protective vaccines represent an unmet need. This is particularly evident for filoviruses, as there are multiple family members that can cause lethal haemorrhagic fever, including Zaire ebolavirus, Sudan ebolavirus, and Marburg virus.
View Article and Find Full Text PDFAdenoviral vectors are being developed as vaccines against infectious agents and tumour-associated antigens, because of their ability to induce cellular immunity. However, the protection afforded in animal models has not easily translated into primates and clinical trials, underlying the need for improving adenoviral vaccines-induced immunogenicity. A Toll-like receptor signalling molecule, TRAM, was assessed for its ability to modify the immune responses induced by an adenovirus-based vaccine.
View Article and Find Full Text PDF