Publications by authors named "Alexandra Houssaye"

In mammals, the patella is the biggest sesamoid bone of the skeleton and is of crucial importance in posture and locomotion, ensuring the role of a pulley for leg extensors while protecting and stabilizing the knee joint. Despite its central biomechanical role, the relation between the shape of the patella and functional factors, such as body mass or locomotor habit, in the light of evolutionary legacy are poorly known. Here, we propose a morphofunctional investigation of the shape variation of the patella among modern rhinoceroses and more generally among perissodactyls, this order of ungulates displaying a broad range of body plan, body mass and locomotor habits, to understand how the shape of this sesamoid bone varies between species and relatively to these functional factors.

View Article and Find Full Text PDF
Article Synopsis
  • This study critically tested the relationship between bone internal structure and strength, specifically focusing on various microanatomical features and their effects on bone resistance to compression.
  • Utilizing finite element analyses on humerus models from a white rhinoceros, the research identified how specific features, like cortex thickening and trabecular bone compactness, contribute to bone strength.
  • The findings suggest that while certain microanatomical changes can compensate for each other, the combined negative effects of two detrimental changes significantly outweigh their individual impacts, enhancing the understanding of bone adaptation and its implications for studying fossil specimens and skeletal evolution. *
View Article and Find Full Text PDF

Theropods are obligate bipedal dinosaurs that appeared 230 million years ago and are still extant as birds. Their history is characterized by extreme variations in body mass, with gigantism evolving convergently between many lineages. However, no quantification of hindlimb functional morphology has shown if these body mass increases led to similar specializations between distinct lineages.

View Article and Find Full Text PDF

Aquatic birds represent diverse ecologies and locomotion types. Some became flightless or lost the ability for effective terrestrial locomotion, yet, certain species excel in water, on land, and in air, despite differing physical characteristics associated with each medium. In this exploratory study, we intend to quantitatively analyze the morphological variety of multiple limb bones of aquatic birds using 3D geometric morphometrics.

View Article and Find Full Text PDF

Heavy animals incur large forces on their limb bones, due to the transmission of body weight and ground reaction forces, and the contractions of the various muscles of the limbs. This is particularly true for rhinoceroses, the heaviest extant animals capable of galloping. Several studies have examined their musculoskeletal system and the forces their bones incur, but no detailed quantification has ever been attempted.

View Article and Find Full Text PDF

Sexual dimorphism is challenging to detect among fossils due to a lack of statistical representativeness. The Angeac-Charente Lagerstätte (France) represents a remarkable 'snapshot' from a Berriasian (Early Cretaceous) ecosystem and offers a unique opportunity to study intraspecific variation among a herd of at least 61 coeval ornithomimosaurs. Herein, we investigated the hindlimb variation across the best-preserved specimens from the herd through 3D Geometric Morphometrics and Gaussian Mixture Modeling.

View Article and Find Full Text PDF

During evolution, several vertebrate lineages have shown trends towards an increase in mass. Such a trend is associated with physiological and musculoskeletal changes necessary to carry and move an increasingly heavy body. Due to their prominent role in the support and movement of the body, limb long bones are highly affected by these shifts in body mass.

View Article and Find Full Text PDF

Ichthyopterygia is a major clade of reptiles that colonized the ocean after the end-Permian mass extinction, with the oldest fossil records found in early Spathian substage (late Olenekian, late Early Triassic) strata in the western USA. Here, we describe reptilian remains found in situ in the early Spathian Neocolumbites insignis ammonoid zone of South Primorye in the Russian Far East. Specimen NSM PV 23854 comprises fragmentary axial elements exhibiting a combination of morphological characteristics typical of Ichthyopterygia.

View Article and Find Full Text PDF

The long bones and associated musculature play a prominent role in the support and movement of the body and are expected to reflect the associated mechanical demands. But in addition to the functional response to adaptive changes, the conjoined effects of phylogenetic, structural and developmental constraints also shape the animal's body. In order to minimise the effect of the aforementioned constraints and to reveal the biomechanical adaptations in the musculoskeletal system to locomotor mode, we here study the forelimb of two closely related martens: the arboreal pine marten (Martes martes) and the more terrestrial stone marten (Martes foina), focusing on their forelimb muscle anatomy and long bone microanatomy; and, especially, on their covariation.

View Article and Find Full Text PDF

Sauropodomorph dinosaurs include the largest terrestrial animals that ever lived on Earth. The early representatives of this clade were, however, relatively small and partially to totally bipedal, conversely to the gigantic and quadrupedal sauropods. Although the sauropod bauplan is well defined, notably by the acquisition of columnar limbs, the evolutionary sequence leading to its emergence remains debated.

View Article and Find Full Text PDF

In amniote vertebrates that transitioned from land to sea, bone mass typically increases and later decreases as active swimming evolves. A new study now has found that heavy bones re-evolved in some fossil marine mammals, suggesting that this trajectory can be reversed.

View Article and Find Full Text PDF

The evolutionary history of archosaurs and their closest relatives is characterized by a wide diversity of locomotor modes, which has even been suggested as a pivotal aspect underlying the evolutionary success of dinosaurs vs. pseudosuchians across the Triassic-Jurassic transition. This locomotor diversity (e.

View Article and Find Full Text PDF

The patella is the largest sesamoid bone of the skeleton. It is strongly involved in the knee, improving output force and velocity of the knee extensors, and thus plays a major role in locomotion and limb stability. However, the relationships between its structure and functional constraints, that would enable a better understanding of limb bone functional adaptations, are poorly known.

View Article and Find Full Text PDF

Land mammals support and move their body using their musculoskeletal system. Their musculature usually presents varying adaptations with body mass or mode of locomotion. Rhinocerotidae is an interesting clade in this regard, as they are heavy animals potentially reaching three tons but are still capable of adopting a galloping gait.

View Article and Find Full Text PDF

Limb long bones are essential to an animal's locomotion, and are thus expected to be heavily influenced by factors such as mass or habitat. Because they are often the only organs preserved in the fossil record, understanding their adaptive trends is key to reconstructing the paleobiology of fossil taxa. In this regard, the Bovidae has always been a prized group of study.

View Article and Find Full Text PDF

Sauropodomorph dinosaurs constitute a well-studied clade of dinosaurs, notably because of the acquisition of gigantism within this group. The genus is one of the best-known sauropodomorphs, with numerous remains from various localities. Its tumultuous taxonomic history suggests the relevance of addressing its intrageneric shape variability, mixed with taphonomic modifications of the original bone shape.

View Article and Find Full Text PDF

The appendicular skeleton of tetrapods is a particularly integrated structure due to the shared developmental origin or similar functional constraints exerted on its elements. Among these constraints, body mass is considered strongly to influence its integration but its effect on shape covariation has rarely been addressed in mammals, especially in heavy taxa. Here, we propose to explore the covariation patterns of the long bones in heavy animals and their link to body mass.

View Article and Find Full Text PDF

The nutrient arteries, located in the long bone diaphysis, are the major blood supply to long bones, especially during the early phases of growth and ossification. Their intersection with the central axis of the medullary area corresponds to the ossification center, and their opening on the outer bone surface to the nutrient foramen. Nutrient arteries/foramen have essentially been analyzed in humans, and only to a much lesser extent in a few mammals.

View Article and Find Full Text PDF

Among amniotes, numerous lineages are subject to an evolutionary trend toward body mass and size increases. Large terrestrial species may face important constraints linked to weight bearing, and the limb segments are particularly affected by such constraints due to their role in body support and locomotion. Such groups showing important limb modifications related to high body mass have been called "graviportal.

View Article and Find Full Text PDF

The early Miocene site of Moroto II, Uganda has yielded some of the oldest known hominoid fossils. A new partial mandible (UMP MORII 03'551) is notable for its long tooth row and large, narrow M with well-developed cristids - a morphological combination previously unknown for large bodied catarrhines of the Early Miocene and suggesting folivory. The tooth proportions are compatible with belonging to the same taxon as the maxilla UMP 62-11, the holotype of Morotopithecus bishopi; likewise, the long tooth row and vertical planum of UMP MORII 03'551 suggest that it may represent the same taxon as mandible(s) UMP 66-01 and UMP 62-10.

View Article and Find Full Text PDF

Isolated ribs and vertebrae of Middle Triassic sauropterygians are studied. The vertebrae have a well-defined large cavity in their centra, which is a unique feature and is without any modern analogue. The articular facets of vertebrae are made of endochondral bone including calcified as well as uncalcified cartilage.

View Article and Find Full Text PDF

Scholars have debated the taxonomic identity of isolated primate teeth from the Asian Pleistocene for over a century, which is complicated by morphological and metric convergence between orangutan (Pongo) and hominin (Homo) molariform teeth. Like Homo erectus, Pongo once showed considerable dental variation and a wide distribution throughout mainland and insular Asia. In order to clarify the utility of isolated dental remains to document the presence of hominins during Asian prehistory, we examined enamel thickness, enamel-dentine junction shape, and crown development in 33 molars from G.

View Article and Find Full Text PDF

Long bone inner structure and cross-sectional geometry display a strong functional signal, leading to convergences, and are widely analyzed in comparative anatomy at small and large taxonomic scales. Long bone microanatomical studies have essentially been conducted on transverse sections but also on a few longitudinal ones. Recent studies highlighted the interest in analyzing variations of the inner structure along the diaphysis using a qualitative as well as a quantitative approach.

View Article and Find Full Text PDF

Secondary marine adaptation is a major pattern in amniote evolution, accompanied by specific bone histological adaptations. In the aftermath of the end-Permian extinction, diverse marine reptiles evolved early in the Triassic. Plesiosauria is the most diverse and one of the longest-lived clades of marine reptiles, but its bone histology is least known among the major marine amniote clades.

View Article and Find Full Text PDF

Brain endocasts obtained from computed tomography (CT) are now widely used in the field of comparative neuroanatomy. They provide an overview of the morphology of the brain and associated tissues located in the cranial cavity. Through anatomical comparisons between species, insights on the senses, the behavior, and the lifestyle can be gained.

View Article and Find Full Text PDF