Publications by authors named "Alexandra Gros"

Cognitive impairments have been reported in astronauts during spaceflights and documented in ground-based models of simulated microgravity (SMG) in animals. However, the neuronal causes of these behavioral effects remain largely unknown. We explored whether adult neurogenesis, known to be a crucial plasticity mechanism supporting memory processes, is altered by SMG.

View Article and Find Full Text PDF

Cognitive decline in spatial memory is seen in aging. Understanding affected processes in aging is vital for developing methods to improve wellbeing. Daily memory persistence can be influenced by events around the time of learning or by prior experiences in early life.

View Article and Find Full Text PDF
Article Synopsis
  • Memories of life episodes are crucial to individual stories, but understanding how episodic memory is formed and stored is challenging in both humans and animals.
  • A study using a new task in rodents demonstrates that rats can create and remember integrated remote episodic memories, showing variations in memory content and accuracy based on their emotional ties to specific odors.
  • Advanced brain imaging revealed that activated brain networks involved in recollecting these memories reflect their nature and content, highlighting the importance of both a cortico-hippocampal network for complete recollection and an emotional network related to odors for maintaining vivid memories.
View Article and Find Full Text PDF

The ability to maintain relevant information on a daily basis is negatively impacted by aging. However, the neuronal mechanism manifesting memory persistence in young animals and memory decline in early aging is not fully understood. A novel event, when introduced around encoding of an everyday memory task, can facilitate memory persistence in young age but not in early aging.

View Article and Find Full Text PDF

Microgravity, one of the conditions faced by astronauts during spaceflights, triggers brain adaptive responses that could have noxious consequences on behaviors. Although monoaminergic systems, which include noradrenaline (NA), dopamine (DA), and serotonin (5-HT), are widespread neuromodulatory systems involved in adaptive behaviors, the influence of microgravity on these systems is poorly documented. Using a model of simulated microgravity (SMG) during a short period in Long Evans male rats, we studied the distribution of monoamines in thirty brain regions belonging to vegetative, mood, motor, and cognitive networks.

View Article and Find Full Text PDF

Decline in cognitive functions, including hippocampus-dependent spatial memory, is commonly observed at a later stage of aging (e.g., >20 months old in rodents) and typically studied after a discrete learning event.

View Article and Find Full Text PDF

A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and structural remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. The prevailing model of how our brain stores new information about relationships between events or new abstract constructs suggests it resides in activity-driven modifications of synaptic strength and remodelling of neural networks brought about by cellular and molecular changes within the neurons activated during learning. To date, the idea that a form of activity-dependent synaptic plasticity known as long-term potentiation, or LTP, and the associated synaptic growth play a central role in the laying down of memories has received considerable support.

View Article and Find Full Text PDF

In search for the mechanisms underlying complex forms of human memory, such as episodic recollection, a primary challenge is to develop adequate animal models amenable to neurobiological investigation. Here, we proposed a novel framework and paradigm that provides means to quantitatively evaluate the ability of rats to form and recollect a combined knowledge of what happened, where it happened, and when or in which context it happened (referred to as episodic-like memory) after a few specific episodes in situations as close as possible to a paradigm we recently developed to study episodic memory in humans. In this task, rats have to remember two odor-drink associations (what happened) encountered in distinct locations (where it happened) within two different multisensory enriched environments (in which context/occasion it happened), each characterized by a particular combination of odors and places.

View Article and Find Full Text PDF

It is well established that Zif268/Egr1, a member of the Egr family of transcription factors, is critical for the consolidation of several forms of memory; however, it is as yet uncertain whether increasing expression of Zif268 in neurons can facilitate memory formation. Here, we used an inducible transgenic mouse model to specifically induce Zif268 overexpression in forebrain neurons and examined the effect on recognition memory and hippocampal synaptic transmission and plasticity. We found that Zif268 overexpression during the establishment of memory for objects did not change the ability to form a long-term memory of objects, but enhanced the capacity to form a long-term memory of the spatial location of objects.

View Article and Find Full Text PDF

New neurons are continuously added to the dentate gyrus of the adult mammalian brain. During the critical period of a few weeks after birth when newborn neurons progressively mature, a restricted fraction is competitively selected to survive in an experience-dependent manner, a condition for their contribution to memory processes. The mechanisms that control critical stages of experience-dependent functional incorporation of adult newborn neurons remain largely unknown.

View Article and Find Full Text PDF