Microspheres containing radioactive holmium-acetylacetonate are employed in emerging radionuclide therapies for the treatment of malignancies. At the molecular level, details on the coordination geometries of the Ho complexes are however elusive. Infrared ion spectroscopy (IRIS) was used to characterize several Ho-acetylacetonate complexes derived from non-radioactive microspheres.
View Article and Find Full Text PDFPluronics P94 are block-copolymer showing prolonged circulation time and tumor-cell internalization in vitro, suggesting a potential for tumor accumulation and as a drug carrier. Here we report the results of the radiolabeled-P94 unimers (P94-In-DTPA) on tumor uptake/retention and biodistribution after intravenous and intratumoral injection to tumor-bearing mice. Intravenous administration results in a high radioactive signal in the liver; while in tumor and other healthy tissues only low levels of radioactivity could be measured.
View Article and Find Full Text PDFChemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery.
View Article and Find Full Text PDFLipid based nanoparticles represent a class of nanocarriers that have caused great expectation, particularly due to their suitability to incorporate BCS class II and IV drugs. The use of solid lipid nanoparticles (SLNs) as a nanocarrier for antineoplastic agents has been underexplored when compared to the encapsulation of the same agents in polymeric particles. The preparation and efficacy assessment of a SLN platform as drug delivery carrier for anticancer agents, herein proposed as a strategy to find innovative formulations, could dramatically improve the outcome of cancer therapy.
View Article and Find Full Text PDF