The realization of hybrid superconductor-semiconductor quantum devices, in particular a topological qubit, calls for advanced techniques to readily and reproducibly engineer induced superconductivity in semiconductor nanowires. Here, we introduce an on-chip fabrication paradigm based on shadow walls that offers substantial advances in device quality and reproducibility. It allows for the implementation of hybrid quantum devices and ultimately topological qubits while eliminating fabrication steps such as lithography and etching.
View Article and Find Full Text PDFSelective-area growth is a promising technique for enabling of the fabrication of the scalable III-V nanowire networks required to test proposals for Majorana-based quantum computing devices. However, the contours of the growth parameter window resulting in selective growth remain undefined. Herein, we present a set of experimental techniques that unambiguously establish the parameter space window resulting in selective III-V nanowire networks growth by molecular beam epitaxy.
View Article and Find Full Text PDFGraphene electrodes are promising candidates to improve reproducibility and stability in molecular electronics through new electrode-molecule anchoring strategies. Here we report sequential electron transport in few-layer graphene transistors containing individual curcuminoid-based molecules anchored to the electrodes via π-π orbital bonding. We show the coexistence of inelastic co-tunneling excitations with single-electron transport physics due to an intermediate molecule-electrode coupling; we argue that an intermediate electron-phonon coupling is the origin of these vibrational-assisted excitations.
View Article and Find Full Text PDFWe demonstrate that graphene nanoribbons (GNRs) produced by the oxidative unzipping of carbon nanotubes can be chemically functionalized by diazonium salts. We show that functional groups form a thin layer on a GNR and modify its electrical properties. The kinetics of the functionalization can be monitored by probing the electrical properties of GNRs, either in vacuum after the grafting, or in situ in the solution.
View Article and Find Full Text PDFMagnetite (Fe3O4), an archetypal transition-metal oxide, has been used for thousands of years, from lodestones in primitive compasses to a candidate material for magnetoelectronic devices. In 1939, Verwey found that bulk magnetite undergoes a transition at TV approximately 120 K from a high-temperature 'bad metal' conducting phase to a low-temperature insulating phase. He suggested that high-temperature conduction is through the fluctuating and correlated valences of the octahedral iron atoms, and that the transition is the onset of charge ordering on cooling.
View Article and Find Full Text PDF