Hepatitis B virus (HBV) targets the liver and is a major driver for liver cancer. Clinical data suggest that HBV infection is associated with reduced response to treatment with the multi-kinase inhibitor sorafenib, the first available molecularly targeted anti-hepatocellular carcinoma (HCC) drug. Given that Raf is one of the major targets of sorafenib, we investigated the activation state of the Raf-Mek-Erk pathway in the presence of HBV and in response to sorafenib.
View Article and Find Full Text PDFRNA-based regulation and CRISPR/Cas transcription factors (CRISPR-TFs) have the potential to be integrated for the tunable modulation of gene networks. A major limitation of this methodology is that guide RNAs (gRNAs) for CRISPR-TFs can only be expressed from RNA polymerase III promoters in human cells, limiting their use for conditional gene regulation. We present new strategies that enable expression of functional gRNAs from RNA polymerase II promoters and multiplexed production of proteins and gRNAs from a single transcript in human cells.
View Article and Find Full Text PDFThe Caenorhabditis elegans inner nuclear envelope protein matefin/SUN-1 plays a conserved, pivotal role in the process of genome haploidization. CHK-2-dependent phosphorylation of SUN-1 regulates homologous chromosome pairing and interhomolog recombination in Caenorhabditis elegans. Using time-lapse microscopy, we characterized the movement of matefin/SUN-1::GFP aggregates (the equivalent of chromosomal attachment plaques) and showed that the dynamics of matefin/SUN-1 aggregates remained unchanged throughout leptonene/zygotene, despite the progression of pairing.
View Article and Find Full Text PDFGenome haploidization during meiosis depends on recognition and association of parental homologous chromosomes. The C. elegans SUN/KASH domain proteins Matefin/SUN-1 and ZYG-12 have a conserved role in this process.
View Article and Find Full Text PDFWe identify a highly specific mutation (jf18) in the Caenorhabditis elegans nuclear envelope protein matefin MTF-1/SUN-1 that provides direct evidence for active involvement of the nuclear envelope in homologous chromosome pairing in C. elegans meiosis. The reorganization of chromatin in early meiosis is disrupted in mtf-1/sun-1(jf18) gonads, concomitant with the absence of presynaptic homolog alignment.
View Article and Find Full Text PDFThe C. elegans genome encodes a single lamin protein (Ce-lamin), three LEM domain proteins (Ce-emerin, Ce-MAN1 and LEM-3) and a single BAF protein (Ce-BAF). Down-regulation of Ce-lamin causes embryonic lethality.
View Article and Find Full Text PDFCaenorhabditis elegans mtf-1 encodes matefin, which has a predicted SUN domain, a coiled-coil region, an anti-erbB-2 IgG domain, and two hydrophobic regions. We show that matefin is a nuclear membrane protein that colocalizes in vivo with Ce-lamin, the single nuclear lamin protein in C. elegans, and binds Ce-lamin in vitro but does not require Ce-lamin for its localization.
View Article and Find Full Text PDFThe nuclear lamina is a structure near the inner nuclear membrane and the peripheral chromatin. It is composed of lamins, which are also present in the nuclear interior, and lamin-associated proteins. The increasing number of proteins that interact with lamins and the compound interactions between these proteins and chromatin-associated proteins make the nuclear lamina a highly complex but also a very exciting structure.
View Article and Find Full Text PDF