Islet autoantibody (iAb)-positive individuals have a high risk of progression to type 1 diabetes (T1D), although the rate of progression is highly variable and factors involved in the rate of progression are largely unknown. The ratio of unmethylated/methylated insulin DNA levels (unmethylated ratio) has been shown to be higher in participants at high risk of T1D compared to healthy controls. We aimed to evaluate whether an unmethylated ratio may be a useful biomarker of beta cell death and rate of progression to T1D.
View Article and Find Full Text PDFType 1 diabetes (T1D) is most likely caused by killing of β cells by autoreactive CD8 T cells. Methods to isolate and identify these cells are limited by their low frequency in the peripheral blood. We analyzed CD8 T cells, reactive with diabetes Ags, with T cell libraries and further characterized their phenotype by CyTOF using class I MHC tetramers.
View Article and Find Full Text PDFObjective: There are variable reports of risk of concordance for progression to islet autoantibodies and type 1 diabetes in identical twins after one twin is diagnosed. We examined development of positive autoantibodies and type 1 diabetes and the effects of genetic factors and common environment on autoantibody positivity in identical twins, nonidentical twins, and full siblings.
Research Design And Methods: Subjects from the TrialNet Pathway to Prevention Study ( = 48,026) were screened from 2004 to 2015 for islet autoantibodies (GAD antibody [GADA], insulinoma-associated antigen 2 [IA-2A], and autoantibodies against insulin [IAA]).
Background: Maturity-onset diabetes of the young (MODY) is an antibody-negative, autosomal dominant form of diabetes. With the increasing prevalence of diabetes and the expense of MODY testing, markers to identify those who need further genetic testing would be beneficial. We investigated whether HLA genotypes, random C-peptide, and/or high-sensitivity C-reactive protein (hsCRP) levels could be helpful biomarkers for identifying MODY in antibody-negative diabetes.
View Article and Find Full Text PDFObjective: To explore whether electrochemiluminescence (ECL) assays can help improve prediction of time to type 1 diabetes in the TrialNet autoantibody-positive population.
Research Design And Methods: TrialNet subjects who were positive for one or more autoantibodies (microinsulin autoantibody, GAD65 autoantibody [GADA], IA-2A, and ZnT8A) with available ECL-insulin autoantibody (IAA) and ECL-GADA data at their initial visit were analyzed; after a median follow-up of 24 months, 177 of these 1,287 subjects developed diabetes.
Results: Univariate analyses showed that autoantibodies by radioimmunoassays (RIAs), ECL-IAA, ECL-GADA, age, sex, number of positive autoantibodies, presence of HLA DR3/4-DQ8 genotype, HbA1c, and oral glucose tolerance test (OGTT) measurements were all significantly associated with progression to diabetes.
Background: Relatives with single positive islet autoantibodies have a much lower risk of progression to diabetes than those with multiple autoantibodies.
Materials And Methods: TrialNet subjects positive for single autoantibody to insulin (mIAA) (n = 50) or single autoantibody to glutamic acid decarboxylase (GADA) (n = 50) were analyzed using new electrochemiluminescence (ECL) assays (ECL-IAA and ECL-GADA, respectively) at their initial visit and longitudinally over time. Affinity assays were performed on a subset of single autoantibody-positive subjects at initial and most recent visits.
Genetic susceptibility to type 1 diabetes (T1D) is well supported by epidemiologic evidence; however, disease risk cannot be entirely explained by established genetic variants identified so far. This study addresses the question of whether epigenetic modification of the inherited DNA sequence may contribute to T1D susceptibility. Using the Infinium HumanMethylation450 BeadChip array (450k), a total of seven long-term disease-discordant monozygotic (MZ) twin pairs and five pairs of HLA-identical, disease-discordant non-twin siblings (NTS) were examined for associations between DNA methylation (DNAm) and T1D.
View Article and Find Full Text PDFMaturity onset diabetes of the young (MODY) is a monogenic form of diabetes caused by a mutation in a single gene, often not requiring insulin. The aim of this study was to estimate the frequency and clinical characteristics of MODY at the Barbara Davis Center. A total of 97 subjects with diabetes onset before age 25, a random C-peptide ≥0.
View Article and Find Full Text PDFObjective: The purpose of this study was to explore whether non-human leukocyte antigen (non-HLA) genetic markers can improve type 1 diabetes(T1D) prediction in a prospective cohort with high-risk HLA-DR,DQ genotypes.
Methods: The Diabetes Autoimmunity Study in the Young (DAISY) follows prospectively for the development of T1D and islet autoimmunity (IA)children at increased genetic risk. A total of 1709 non-Hispanic White DAISY participants have been genotyped for 27 non-HLA single nucleotide polymorphisms (SNPs) and one microsatellite.
Objective: We evaluated a novel electrochemiluminescent assay for insulin/proinsulin autoantibodies (ECL-IAA) as a new marker of the onset of islet autoimmunity and as a predictor of type 1 diabetes.
Research Design And Methods: The Diabetes Autoimmunity Study in the Young (DAISY) prospectively follows children at increased genetic risk for development of islet autoimmunity (defined as presence of autoantibodies to insulin, GAD65, IA-2, or zinc transporter 8 [ZnT8]) and type 1 diabetes (general population of children and first-degree relatives). Serial serum samples from subjects who progressed to type 1 diabetes and who had their first islet autoantibodies measured by age 18 months (N = 47) were tested using ECL-IAA.