Publications by authors named "Alexandra Filipe"

With amphiphilic properties, cellulose molecules are expected to adsorb at the O/W interface and be capable of stabilizing emulsions. The effect of solvent quality on the formation and stability of cellulose-based O/W emulsions was evaluated in different alkaline systems: NaOH, NaOH-urea and tetrabutylammonium hydroxide (TBAH). The optimal solvency conditions for cellulose adsorption at the O/W interface were found for the alkaline solvent with an intermediate polarity (NaOH-urea), which is in line with the favorable conditions for adsorption of an amphiphilic polymer.

View Article and Find Full Text PDF

Lignocellulosic biomass fractionation is typically performed using methods that are somehow harsh to the environment, such as in the case of kraft pulping. In recent years, the development of new sustainable and environmentally friendly alternatives has grown significantly. Among the developed systems, bio-based solvents emerge as promising alternatives for biomass processing.

View Article and Find Full Text PDF

Lignocellulosic biomass is a renewable and sustainable feedstock, mainly composed of cellulose, hemicellulose, and lignin. Lignin, as the most abundant natural aromatic polymer occurring on Earth, has great potential to produce value-added products. However, the isolation of highly pure lignin from biomass requires the use of efficient methods during lignocellulose fractionation.

View Article and Find Full Text PDF

Cellulose can be dissolved in concentrated acidic aqueous solvents forming extremely viscous solutions, and, in some cases, liquid crystalline phases. In this work, the concentrated phosphoric acid aqueous solvent is revisited implementing a set of advanced techniques, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR), and diffusing wave spectroscopy (DWS). Cryo-TEM images confirm that this solvent system is capable to efficiently dissolve cellulose.

View Article and Find Full Text PDF

Cellulose-based oil-in-water (O/W) emulsions were studied by diffusing wave spectroscopy (DWS) regarding the effect of the cellulose concentration and mixing rate on the average droplet size, microrheological features and stability. Furthermore, the microstructure of these emulsions was imaged by cryo-scanning electron microscopy (cryo-SEM). The micrographs showed that cellulose was effectively adsorbed at the oil-water interface, resembling a film-like shell that protected the oil droplets from coalescing.

View Article and Find Full Text PDF

Recently, milk consumption has been declining and there is a high demand for non-dairy beverages. However, market offers are mainly cereal and nut-based beverages, which are essentially poor in protein (typically, less than 1.5% against the 3.

View Article and Find Full Text PDF

Lignin is a natural, renewable resource with potential to be used in biomaterials. Due to its complex structure, its efficient dissolution is still challenging, which hinders its applicability at large scale. This challenge become harder considering the current need of sustainable and environmentally friendly solvents.

View Article and Find Full Text PDF

1,8-Cineole is the main volatile produced by Thymus albicans Hoffmanns. & Link 1,8-cineole chemotype. To understand the contribution of distinct plant organs to the high 1,8-cineole production, trichome morphology and density, as well as emitted volatiles and transcriptional expression of the 1,8-cineole synthase (CIN) gene were determined separately for T.

View Article and Find Full Text PDF

Lignins are among the most abundant renewable resources on the planet. However, their application is limited by the lack of efficient dissolution and extraction methodologies. In this work, a systematic and quantitative analysis of the dissolution efficiency of different alkaline-based aqueous systems (i.

View Article and Find Full Text PDF

L. silk fibroin (SF) is widely used in different areas due to its ability to form durable and resilient materials with notable mechanical properties. However, in some of these applications the dissolution of SF is required, and this is not often straightforward due to its inability to be dissolved in the majority of common solvents.

View Article and Find Full Text PDF

Emulsion stabilization by native cellulose has been mainly hampered because of its insolubility in water. Chemical modification is normally needed to obtain water-soluble cellulose derivatives. These modified celluloses have been widely used for a range of applications by the food, cosmetic, pharmaceutic, paint and construction industries.

View Article and Find Full Text PDF

The gelation of cellulose in alkali solutions is quite relevant, but still a poorly understood process. Moreover, the role of certain additives, such as urea, is not consensual among the community. Therefore, in this work, an unusual set of characterization methods for cellulose solutions, such as cryo-transmission electronic microscopy (cryo-TEM), polarization transfer solid-state nuclear magnetic resonance (PTssNMR) and diffusion wave spectroscopy (DWS) were employed to study the role of urea on the dissolution and gelation processes of cellulose in aqueous alkali.

View Article and Find Full Text PDF

The essential oil of Thymus albicans Hoffmanns. & Link, a native shrub from the Iberian Peninsula, is mainly composed of monoterpenes. In this study, a 1,8-cineole synthase was isolated from the 1,8-cineole chemotype.

View Article and Find Full Text PDF

Understanding the molecular events involved in the acquisition of competence during oogenesis is a key step to determine the secret of 'high quality' eggs for aquaculture. Quantitative real time polymerase chain reaction (qPCR) is the technique of election to determine changes in transcript abundance in such studies, but choosing reference genes for normalization, in particular during oogenesis, remains a challenge. In the present study, transcription of 6 functionally distinct genes, β actin (ACTB), cathepsin D (CTSD), cathepsin Z (CTSZ), elongation factor 1 α (EEF1A), TATA binding protein (TBP) and tubulin A (TUBA1A) was assessed as normalizers of bone morphogenetic protein (BMP) and activin membrane-bound inhibitor (BAMBI) gene expression in mRNA from Mozambique tilapia oocytes during oogenesis.

View Article and Find Full Text PDF