Publications by authors named "Alexandra F Elli"

Background: Clear cell renal cell carcinoma, a solid growing tumor, is the most common tumor in human kidney. Evaluating the usefulness of β-galactoside binding galectin-3 as a diagnostic marker for this type of cancer could open avenues for preventive and therapeutic strategies by employing specific inhibitors of the lectin. To study a putative correlation between the extent of galectin-3 and the development of clear cell renal cell carcinoma, we monitored the quantity and distribution of this lectin in tissue samples from 39 patients.

View Article and Find Full Text PDF

Single-molecule spectroscopy at cryogenic temperatures was used to elucidate spectral properties, heterogeneities, and dynamics of the chlorophyll a (Chla) molecules responsible for the fluorescence in photosystem I (PSI) from the cyanobacteria Thermosynechococcus elongatus. Absorption and hole burning data suggest the presence of three pools absorbing at wavelengths greater than 700 nm with their absorption maxima at 708, 715, and 719 nm. The responsible Chla molecules are termed C708, C715, and C719.

View Article and Find Full Text PDF

Background: Large-scale mutagenesis screens in the zebrafish employing the mutagen ENU have isolated several hundred mutant loci that represent putative developmental control genes. In order to realize the potential of such screens, systematic genetic mapping of the mutations is necessary. Here we report on a large-scale effort to map the mutations generated in mutagenesis screening at the Max Planck Institute for Developmental Biology by genome scanning with microsatellite markers.

View Article and Find Full Text PDF

Photosystem I reaction centers of the cyanobacterium Thermosynechococcus elongatus have been investigated using single-molecule spectroscopy. Single-molecule fluorescence emission spectra reveal a new fluorescence band located at 745 nm. Fluorescence polarization spectroscopy and fluorescence autocorrelation analysis show that only a few chlorophylls are responsible for the photoemission from the Photosystem I trimer at low temperature.

View Article and Find Full Text PDF