Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGCs) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and its surrounding glial coat.
View Article and Find Full Text PDFDecellularized nerve, or acellular nerve allografts (ANAs), are an increasingly used alternative to nerve autografts to repair nerve gaps to facilitate regeneration. The adaptive immune system, specifically T cells, plays a role in promoting regeneration upon these ANA scaffolds. However, how T cells promote regeneration across ANAs is not clear.
View Article and Find Full Text PDFIntroduction: Neuroenhancing therapies are desired because repair of nerve injuries can fail to achieve recovery. We compared two neuroenhancing therapies, electrical stimulation (ES) and systemic tacrolimus (FK506), for their capabilities to enhance regeneration in the context of a rat model.
Methods: Rats were randomized to four groups: ES 0.
Neurons of the PNS are able to regenerate injured axons, a process requiring significant cellular resources to establish and maintain long-distance growth. Genetic activation of mTORC1, a potent regulator of cellular metabolism and protein translation, improves axon regeneration of peripheral neurons by an unresolved mechanism. To gain insight into this process, we activated mTORC1 signaling in mouse nociceptors via genetic deletion of its negative regulator Tsc2.
View Article and Find Full Text PDFThe geriatric trauma population is unique. These patients are at risk of being discharged to rehabilitation or a skilled nursing facility, instead of being returned to their homes, placing a significant burden on both the patient families and society. This study evaluated which patient characteristics increase the likelihood of a previously independent geriatric blunt trauma becoming functionally dependent and being discharged to a location other than home.
View Article and Find Full Text PDFBackground: Mechanical properties of tissue-engineered cartilage and a variety of endogenous cartilage were measured. The main goal was to evaluate if the tissue-engineered cartilage have similar mechanical characteristics to be replaced with rib cartilage in microtia reconstruction. Such study lays the foundation for future human clinical trials for microtia reconstruction.
View Article and Find Full Text PDFIntroduction: We describe a case of a large type III neuroendocrine tumor of the stomach. Management and current literature are reviewed.
Presentation Of Case: A 37year old female presented with upper gastrointestinal bleed and epigastric pain.
Tissue Eng Part C Methods
September 2015
Reconstruction of craniofacial congenital bone defects has historically relied on autologous bone grafts. Engineered bone using mesenchymal stem cells from the umbilical cord on electrospun nanomicrofiber scaffolds offers an alternative to current treatments. This preclinical study presents the development of a juvenile swine model with a surgically created maxillary cleft defect for future testing of tissue-engineered implants for bone generation.
View Article and Find Full Text PDFBackground: A key to clinical microtia reconstruction is construct flexibility. The most significant current limitation to engineered elastic cartilage is maintaining an elastic phenotype, which is principally dependent on elastin production (although other parameters, including maintenance of a ratio above 1 for collagens II to I, minimizing collagen X content, and presence of adequate matrix fibrillin for elastin binding, all play supporting roles). Connective tissue growth factor (CTGF), a compound secreted by chondrocytes, has been shown to promote an elastic phenotype in mature rabbit chondrocytes; however, CTGF effect on undifferentiated mesenchymal stem cells (MSCs) has not been characterized.
View Article and Find Full Text PDFStep-growth, radically mediated thiol-norbornene photopolymerization is used to create versatile, stimuli-responsive poly(ethylene glycol)-co-peptide hydrogels The reaction is cytocompatible and allows for the encapsulation of human mesenchymal stem cells with a viability greater than 95%. Cellular spreading is dictated via three-dimensional biochemical photopatterning.
View Article and Find Full Text PDF