At the catalytic site for the hydrolysis of cellulose the enzyme cellobiohydrolase Cel7A binds the enantiomers of the adrenergic beta-blocker propranolol with different selectivity. Methyl-to-hydroxymethyl group modifications of propranolol, which result in higher affinity and improved selectivity, were herein studied by H, H and H, C scalar spin-spin coupling constants as well as utilizing the nuclear Overhauser effect (NOE) in conjunction with molecular dynamics simulations of the ligands per se, which showed the presence of all-antiperiplanar conformations, except for the one containing a vicinal oxygen-oxygen arrangement governed by the gauche effect. For the ligand-protein complexes investigated by NMR spectroscopy using, inter alia, transferred NOESY and saturation-transfer difference (STD) NMR experiments the S-isomers were shown to bind with a higher affinity and a conformation similar to that preferred in solution, in contrast to the R-isomer.
View Article and Find Full Text PDFBackground: The model grass Brachypodium distachyon is increasingly used to study various aspects of grass biology. A large and genotypically diverse collection of B. distachyon germplasm has been assembled by the research community.
View Article and Find Full Text PDFThe commercialization of lignocellulosic biofuels relies in part on the ability to engineer cellulase enzymes to have properties compatible with practical processing conditions. The cellulase Cel7A has been a common engineering target because it is present in very high concentrations in commercial cellulase cocktails. Significant effort has thus been focused on its recombinant expression.
View Article and Find Full Text PDF