Production of polyhydroxyalkanoate (PHA) biopolymers by mixed microbial cultures concurrent to wastewater treatment is a valorization route for residual organic material. This development has been at pilot scale since 2011 using industrial and municipal organic residuals. Previous experience was the basis for a PHA production demonstration project: PHARIO.
View Article and Find Full Text PDFThe use of granular electrodes in Microbial Fuel Cells (MFCs) is attractive because granules provide a cost-effective way to create a high electrode surface area, which is essential to achieve high current and power densities. Here, we show a novel reactor design based on capacitive granules: the fluidized capacitive bioanode. Activated carbon (AC) granules are colonized by electrochemically active microorganisms, which extract electrons from acetate and store the electrons in the granule.
View Article and Find Full Text PDFWe developed an integrated system for storage of renewable electricity in a microbial fuel cell (MFC). The system contained a capacitive electrode that was inserted into the anodic compartment of an MFC to form a capacitive bioanode. This capacitive bioanode was compared with a noncapacitive bioanode on the basis of performance and storage capacity.
View Article and Find Full Text PDF