Background: Insects have evolved complex visual systems and display an astonishing range of adaptations for diverse ecological niches. Species of Drosophila melanogaster subgroup exhibit extensive intra- and interspecific differences in compound eye size. These differences provide an excellent opportunity to better understand variation in insect eye structure and the impact on vision.
View Article and Find Full Text PDFFront Cell Dev Biol
February 2023
Hox genes are expressed during embryogenesis and determine the regional identity of animal bodies along the antero-posterior axis. However, they also function post-embryonically to sculpt fine-scale morphology. To better understand how Hox genes are integrated into post-embryonic gene regulatory networks, we further analysed the role and regulation of () during leg development in .
View Article and Find Full Text PDFEvolutionary developmental biology (or evo devo) is a broad field that aims to understand how developmental processes evolve and how this underpins phenotypic change and organismal diversification. This encompasses a need to understand theoretical concepts in evolutionary biology and how tissues, cells, genes, proteins and regulatory elements function and evolve. The articles in this special issue review key topics in the field of evo devo including advances in theory and methodology as well as our latest knowledge about molecular, cellular and organismal functionality and diversification.
View Article and Find Full Text PDFHox genes function early in development to determine regional identity in animals. Consequently, the loss or gain of Hox gene expression can change this identity and cause homeotic transformations. Over 20 years ago, it was observed that the role of Hox genes in patterning animal body plans involves the fine-scale regulation of cell fate and identity during development, playing the role of 'micromanagers' as proposed by Michael Akam in key perspective papers.
View Article and Find Full Text PDF