Publications by authors named "Alexandra Christine Graf"

An important step in the development of targeted therapies is the identification and confirmation of sub-populations where the treatment has a positive treatment effect compared to a control. These sub-populations are often based on continuous biomarkers, measured at baseline. For example, patients can be classified into biomarker low and biomarker high subgroups, which are defined via a threshold on the continuous biomarker.

View Article and Find Full Text PDF

With the advent of personalized medicine, clinical trials studying treatment effects in subpopulations are receiving increasing attention. The objectives of such studies are, besides demonstrating a treatment effect in the overall population, to identify subpopulations, based on biomarkers, where the treatment has a beneficial effect. Continuous biomarkers are often dichotomized using a threshold to define two subpopulations with low and high biomarker levels.

View Article and Find Full Text PDF

There has been increasing interest in trials that allow for design adaptations like sample size reassessment or treatment selection at an interim analysis. Ignoring the adaptive and multiplicity issues in such designs leads to an inflation of the type 1 error rate, and treatment effect estimates based on the maximum likelihood principle become biased. Whereas the methodological issues concerning hypothesis testing are well understood, it is not clear how to deal with parameter estimation in designs were adaptation rules are not fixed in advanced so that, in practice, the maximum likelihood estimate (MLE) is used.

View Article and Find Full Text PDF