Publications by authors named "Alexandra Charlesworth"

Epidermolysis bullosa simplex is a group of inherited disorders with allelic and locus heterogeneity in which skin fragility and blistering within the skin occur. Mutations in KRT5 and KRT14 underlie the majority of reported cases. Mutations in KLHL24, a gene that encodes KLHL24 protein, have been reported recently to cause a generalized subtype of epidermolysis bullosa simplex, presumably by increasing the degradation of keratin 14.

View Article and Find Full Text PDF

Epidermolysis bullosa with pyloric atresia (EB-PA) is a rare autosomal recessive hereditary disease with a variable prognosis from lethal to very mild. EB-PA is classified into Simplex form (EBS-PA: OMIM #612138) and Junctional form (JEB-PA: OMIM #226730), and it is caused by mutations in ITGA6, ITGB4 and PLEC genes. We report the analysis of six patients with EB-PA, including two dizygotic twins.

View Article and Find Full Text PDF

Genetic mutations invalidating the genes for integrin alpha6beta4 and, in some cases, plectin are associated with junctional and simplex epidermolysis bullosa with pyloric atresia (PA-JEB and PA-EBS), respectively. These recessive inherited conditions are characterized by pregnancies with fetal bullae, pyloric atresia, polyhydramnios, and neonatal mucocutaneous blistering, which often results in early postnatal demise. To date, first-trimester DNA-based prenatal diagnosis is not applicable to affected kindred carrying as yet unidentified genetic mutations.

View Article and Find Full Text PDF

Herlitz disease (H-JEB), the lethal form of junctional epidermolysis bullosa, is a rare genodermatosis presenting from birth with widespread erosions and blistering of skin and mucosae because of tissue cleavage within the epidermal basement membrane. Mutations in any of the three genes encoding the alpha3, beta3 and gamma2 chains of laminin-5 underlie this recessively inherited disorder. Here, we report the molecular basis and clinical course of H-JEB in 12 patients.

View Article and Find Full Text PDF

Genetic mutations in plectin, a cytoskeleton linker protein expressed in a large variety of tissues including skin, muscle, and nerves, cause epidermolysis bullosa simplex with muscular dystrophy, a recessive inherited disease characterized by blistering of the skin and late onset of muscular dystrophy, and Ogna epidermolysis bullosa simplex, a rare dominant inherited form of epidermolysis bullosa simplex with no muscular involvement. Here we report a novel homozygous genetic mutation (2727del14) in the plectin gene (PLEC1) associated with a lethal form of recessive inherited epidermolysis bullosa in a consanguineous family with three affected offspring. This new clinical variant of epidermolysis bullosa is characterized by general skin blistering, aplasia cutis of the limbs, developmental complications, and rapid demise after birth.

View Article and Find Full Text PDF

Recent achievements in the genetic correction of keratinocytes isolated from patients with junctional epidermolysis bullosa have paved the way to a gene therapy approach for the disease. Because gene therapy protocols require preclinical validation in animals, we have characterized spontaneous animal models of junctional epidermolysis bullosa. In this study we have elucidated the genetic basis of the hereditary junctional mechanobullous disease in the Belgian horse, a condition characterized by blistering of the skin and mouth epithelia, and exungulation (loss of the hoof).

View Article and Find Full Text PDF